This study was aimed at finding structural requirements for the interaction of the acyl chain of endocannabinoids with cannabinoid receptors, membrane transporter protein, and fatty acid amide hydrolase (FAAH). To this end, the flexibility of the acyl chain was restricted by introduction of an 1-hydroxy-2Z,4E-pentadiene system in anandamide (N-arachidonoylethanolamine, AEA) and 2-arachidonoylglycerol (2-AG) at various positions using different lipoxygenases. This brought about selectivity and attenuated the binding potency of AEA and 2-AG. Although the displacement constants were modest, 15(S)-hydroxy-eicosa-5Z,8Z,11Z,-13E-tetraenoyl-N-(2-hydroxyethyl)amine was found to bind selectively to the CB 1 receptor, whereas its 1-arachidonoyl-sn-glycerol analogue and 13(S)-hydroxy-octadeca-9Z,11E-dienoyl-N-(2-hydroxyethyl)amine could selectively bind to the CB 2 receptor. 11(S)-Hydroxy-eicosa-5Z,8Z,12E,14Z-tetraenoyl-N-(2-hydroxyethyl)amine did not bind to either receptor, whereas 12(S)-hydroxy-eicosa-5Z,8Z,10E,14Z-tetraenoyl-N-(2-hydroxyethyl)amine did bind to both CB receptors with an affinity similar to that of AEA. All oxygenated anandamide derivatives were good inhibitors of FAAH (low micromolar K i ) but were ineffective on the AEA transporter. 2-AG rapidly isomerizes into 1(3)-arachidonoyl-sn-glycerol. Both 1-and 3-arachidonoyl-snglycerol did not bind to either CB receptor and did not interfere with AEA transport. Thus, after it is isomerized, 2-AG is inactivated, thereby decreasing effective concentrations of 2-AG. Analysis of 1 H NMR spectra revealed that chloroform did not induce notably different conformations in the acyl chain of 15(S)-hydroxy-eicosa-5Z,8Z,11Z,13E-tetraenoic acid as compared with water. Molecular dynamics (MD) simulations of AEA and its analogues in the presence of explicit water molecules revealed that a tightly folded conformation of the acyl chain is not the only requirement for CB 1 binding. Structural details of the C 2 -C 15 loop, such as an sp 2 carbon at position 11, are necessary for receptor binding. The MD simulations may suggest that the average orientations of the pentyl tail of AEA and 12(S)-hydroxy-eicosa-5Z,8Z,-10E,14Z-tetraenoyl-N-(2-hydroxyethyl)amine are different from that of the low-affinity, inactive ligands.
Species-specific cell reaggregation in the marine sponge Microciona prolifera is mediated by an adhesion proteoglycan. Two interactions are involved in the process: a Ca(2+)-dependent homophilic binding between proteoglycan molecules and a Ca(2+)-independent binding between the molecule and cells. Both interactions are mediated by the glycan moieties of the proteoglycan. The interaction of the proteoglycan with itself has been characterized as a carbohydrate-carbohydrate interaction of multiple low affinity sites. The monoclonal antibodies Block 1 and Block 2 raised against the purified aggregation proteoglycan and selected for inhibition of aggregation bind to these glycans. In a previous report the structure, [formula: see text] was assigned to the oligosaccharide reacting with Block 1 antibody (Spillmann, D., Hård, K., Thomas-Oates, J., Vliegenthart, J. F. G., Misevic, G., Burger, M. M., and Finne, J. (1993) J. Biol. Chem. 268, 13378-13387). By the technique of attaching the water-soluble acid-degraded fragments to a lipid carrier for immunochemical detection and by chemical, enzymatic and spectroscopic methods the structure, [formula: see text] was assigned to the oligosaccharide reacting with the aggregation-blocking monoclonal antibody Block 2. The structure, [formula: see text] was assigned to a major nonreactive oligosaccharide, which outlined the molecular requirements of antibody binding of the two aggregation-associated epitopes. These data demonstrate that two different functional sites with distinct structural characteristics and antibody reactivities are involved in the reaggregation of sponge cells, a model of carbohydrate-carbohydrate-mediated cell interactions.
Endogenous lectins induce effects on cell growth by binding to antennae of natural glycoconjugates. These complex carbohydrates often present more than one potential lectin-binding site in a single chain. Using the growth-regulatory interaction of the pentasaccharide of ganglioside GM(1) with homodimeric galectin-1 on neuroblastoma cell surfaces as a model, we present a suitable strategy for addressing this issue. The approach combines NMR spectroscopic and computational methods and does not require isotope-labeled glycans. It involves conformational analysis of the two building blocks of the GM(1) glycan, i.e., the disaccharide Galbeta1-3GalNAc and the trisaccharide Neu5Acalpha2-3Galbeta1-4Glc. Their bound-state conformations were determined by transferred nuclear Overhauser enhancement spectroscopy. Next, measurements on the lectin-pentasaccharide complex revealed differential conformer selection regarding the sialylgalactose linkage in the tri- versus pentasaccharide (Phi and Psi value of -70 degrees and 15 degrees vs 70 degrees and 15 degrees, respectively). To proceed in the structural analysis, the characteristic experimentally detected spatial vicinity of a galactose unit and Trp68 in the galectin's binding site offered a means, exploiting saturation transfer from protein to carbohydrate protons. Indeed, we detected two signals unambiguously assigned to the terminal Gal and the GalNAc residues. Computational docking and interaction energy analyses of the entire set of ligands supported and added to experimental results. The finding that the ganglioside's carbohydrate chain is subject to differential conformer selection at the sialylgalactose linkage by galectin-1 and GM(1)-binding cholera toxin (Phi and Psi values of -172 degrees and -26 degrees, respectively) is relevant for toxin-directed drug design. In principle, our methodology can be applied in studies aimed at blocking galectin functionality in malignancy and beyond glycosciences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.