In the last decade, organocatalysis, the use of small chiral organic molecules as catalysts, has proven to be a valuable and attractive tool for the synthesis of enantiomerically enriched molecules. A number of organocatalysts and processes, such as one-pot, tandem, cascade or multicomponent reactions, have been reported to date. Furthermore, the many advantages of organocatalysis - robust, non-toxic, affordable, inert atmosphere, easy reaction manipulation, etc. - allow the preparation of bioactive compounds using simple and metal-free procedures, thus avoiding false positives in the biological evaluation. This mini-review focuses on medicinal chemistry programs that have synthesized biologically active compounds using one or more organocatalytic steps. In this respect, the potential of organocatalytic methods for enabling the chemical synthesis of important medicinal targets will be highlighted.
The first organocatalytic enantioselective direct alpha-alkynylation of beta-ketoesters and 3-acyl oxindoles is described. It is demonstrated that activated beta-halo-alkynes undergo nucleophilic acetylenic substitution catalyzed by chiral phase-transfer compounds to afford the alkynylated products in high yields and excellent enantioselectivities. The potential of the reaction is first demonstrated for various alkynylating reagents having chloride and bromide as the leaving groups and substituents such as allyl and alkyl esters, amides, ketones, and sulfones. These reactions proceed with 74-99% yield and 88-97% ee. Then the scope in nucleophile is demonstrated for a large number of cyclic beta-ketoesters with various ring-sizes and for oxindoles as well. The corresponding optically active products are formed in high yields and with enantioselectivities up to 98% ee. The procedure allows for the stereocontrolled attachment of an ethynyl unit in the alpha-position to the carbonyl compound by facile removal of the activating group, and this has been demonstrated for a number of the optically active allyl esters. Furthermore, the synthesis of optically active 1,4-enynes is also shown. The isolation and characterization by X-ray analysis of the catalyst with p-nitrophenolate as the counterion allowed us to propose a model of the catalyst-substrate intermediate which might account for the observed enantioselectivity of the organocatalytic enantioselective alpha-alkynylation reaction. Furthermore, it is suggested that this intermediate is also the reactive species for a number of other electrophiles adding to beta-ketoesters giving enantioselectivities in the range of 90-98% ee.
The functionalization of an imine-based layered covalent organic framework (COF), containing phenanthroline units as ligands, has allowed the obtention of a heterobimetallated material. Photoactive Ir and Ni fragments were immobilized within the porous structure of the COF, enabling heterogeneous light-mediated Csp 3 –Csp 2 cross-couplings. As radical precursors, potassium benzyl- and alkoxy-trifluoroborates, organic silicates, and proline derivatives were employed, which brings out the good versatility of Ir,Ni@Phen-COF . Moreover, in all the studied cases, an enhanced activity and stability have been observed in comparison with analogous homogenous systems.
Quinone pro quo: The organocatalytic enantioselective α‐arylation of aldehydes using quinones as the aromatic partner was carried out. The reaction proceeds well using H2O or EtOH/H2O mixtures as solvent. The corresponding optically active α‐arylated aldehydes are obtained in high yields and with excellent enantioselectivities (see scheme; TMS: trimethylsilyl).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.