To improve the stability and carrier mobility of quantum dot (QD) optoelectronic devices, encapsulation or pore infilling processes are advantageous. Atomic layer deposition (ALD) is an ideal technique to infill and overcoat QD films, as it provides excellent control over film growth at the sub‐nanometer scale and results in conformal coatings with mild processing conditions. Different thicknesses of crystalline ZnO films deposited on InP QD films are studied with spectrophotometry and time‐resolved microwave conductivity measurements. High carrier mobilities of 4 cm2 (V s)−1 and charge separation between the QDs and ZnO are observed. Furthermore, the results confirm that the stability of QD thin films is strongly improved when the inorganic ALD coating is applied. Finally, proof‐of‐concept photovoltaic devices of InP QD films are demonstrated with an ALD‐grown ZnO electron extraction layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.