In 40 patients with intractable intracranial hypertension and at very high risk of brain death, decompressive craniectomy allowed 25% of patients to attain social rehabilitation at 1 yr.
Numerous studies have been devoted to the regeneration of the motor pathway toward a denervated muscle after nerve injury. However, the regeneration of sensory muscle endings after repair by self-anastomosis are little studied. In previous electrophysiological studies, our laboratory showed that the functional characteristics of tibialis anterior muscle afferents are differentially affected after injury and repair of the peroneal nerve with and without chronic electrostimulation. The present study focuses on the axonal regeneration of mechano- (fibers I and II) and metabosensitive (fibers III and IV) muscle afferents by evaluating the recovery of their response to different test agents after nerve injury and repair by self-anastomosis during 10 wk of treadmill running (LSR). Data were compared with control animals (C), animals with nerve lesion and suture (LS), and animals with lesion, suture, and chronic muscle rehabilitation by electrostimulation (LSE) with a biphasic current modulated in pulse duration and frequency, eliciting a pattern mimicking the activity delivered by the nerve to the muscle. Compared with the C group, results indicated that 1) muscle weight was smaller in LS and LSR groups, 2) the fatigue index was greater in the LS group and smaller in the LSE group, 3) metabosensibility remained altered in the LS and LSE groups, and 4) mechanosensitivity presented a large increase of the activation pattern in the LS and LSE groups. Our data indicated that chronic muscle electrostimulation partially favors the recovery of muscle properties (i.e., muscle weight and twitch response were close to the C group) and that rehabilitation by treadmill running also efficiently induced a better functional muscle afferent recovery (i.e., the discharge pattern was similar to the C group). The effectiveness of the chronic electromyostimulation and the treadmill exercise on afferent recovery is discussed with regard to parameters listed above.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.