Background: The turbot (Scophthalmus maximus; Scophthalmidae; Pleuronectiformes) is a flatfish species of great relevance for marine aquaculture in Europe. In contrast to other cultured flatfish, very few genomic resources are available in this species. Aeromonas salmonicida and Philasterides dicentrarchi are two pathogens that affect turbot culture causing serious economic losses to the turbot industry. Little is known about the molecular mechanisms for disease resistance and hostpathogen interactions in this species. In this work, thousands of ESTs for functional genomic studies and potential markers linked to ESTs for mapping (microsatellites and single nucleotide polymorphisms (SNPs)) are provided. This information enabled us to obtain a preliminary view of regulated genes in response to these pathogens and it constitutes the basis for subsequent and more accurate microarray analysis.
We evaluated the expression profiles of turbot in the spleen, liver, and head kidney across five temporal points of the Aeromonas salmonicida infection process using an 8 × 15 K Agilent oligo-microarray. The microarray included 2,176 different fivefold replicated gene probes designed from a turbot 3' sequenced EST database. We were able to identify 471 differentially expressed (DE) genes (17.3% of the whole microarray), 223 in the spleen, 246 in the liver, and 125 in the head kidney, in at least one of the five temporal points sampled for each organ. Most of these genes could be annotated (83.0%) and functionally categorized using Gene Ontology terms (69.1%) after the additional sequencing of DE genes from the 5' end. Many DE genes were related to innate and acquired immune functions in accordance to previous studies with this pathogen in other fish species. A high proportion of DE genes were organ specific (77.1%), but their associated GO functions were rather similar in the three organs. The most striking difference in functional distribution was observed between the up- and down-regulated gene groups. Up-regulated genes were mostly associated to key immune functions while down-regulated ones mainly involved metabolism- and transport-related genes. Genetic response appeared clustered in groups of genes with similar expression profiles along the temporal series. The spleen showed the most clustering while the liver and head kidney displayed a higher diversification. The information obtained will aid to understand the turbot immune response and will specifically be valuable to develop strategies of defense to A. salmonicida to achieve more resistant broodstocks for turbot industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.