This work is devoted to the construction of a new static and spherical solution for an anisotropic fluid distribution. The construction is based in the framework of gravitational decoupling through a particular case of the extended minimal geometric deformation called 2-steps GD. In this sense, the differential equations arising from gravitational decoupling are closed using the vanishing complexity factor. The Heintzmann IIa solution is used as seed solution. The solution fulfills the fundamental physical acceptability conditions for a restricted set of compactness parameters.
Two new static and spherically symmetric interior solutions in the regime isotropic and anisotropic fluid pressure with vanishing complexity are constructed. For the construction of these interior solutions the framework of Gravitational Decoupling considering an unusual way through the choose a temporal metric deformation is used. We use the Einstein’s universe solution and an ansatz as seed solutions. The solutions fulfill the fundamental physical acceptability conditions for a restricted set of compactness parameters.
In this work, we use the gravitational decoupling framework through the extended minimal geometric deformation to construct and study a new interior isotropic extension of Einstein’s universe solution. The resulting model fulfills the fundamental physical acceptance conditions. As well, we study the energy exchange between the Einstein’s fluid distribution and an extra perfect fluid which supports the resulting isotropic stellar configuration.
El objetivo del presente trabajo fue estudiar el comportamiento de las paredes de dominio ferroeléctricas en una nanoesfera de titanato de plomo bajo diferentes condiciones térmicas, eléctricas y mecánicas. Para ello se ha hecho uso de la teoría fenomenológica de Ginzburg-Landau y para obtener el estado de equilibrio se utilizaron principios variacionales; las ecuaciones que aparecen en el desarrollo se resolvieron analíticamente. Los resultados obtenidos proveen un perfil de la polarización dentro de las paredes de dominio 180° de la nanoesfera de titanato de plomo, así como el espesor de dicha pared en función de la temperatura y para distintas condiciones de la nanoesfera. Se observa que, con el aumento de la temperatura, el perfil de la polarización se reduce y el espesor de la pared crece al acercarse a cierta temperatura; todo lo cual permitiría sintonizar la temperatura de transición ferroeléctrica mediante el control del tamaño de la nanoestructura, de la presencia de cargas libres y de la aplicación de esfuerzos mecánicos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.