While the inhalation of Thymus vulgaris L. essential oil (EO) is commonly approved for the treatment of mild respiratory infections, there is still a lack of data regarding the antimicrobial activity and chemical composition of its vapours. The antibacterial activity of the three T. vulgaris EOs against respiratory pathogens, including Haemophilus influenzae, Staphylococcus aureus, and Streptococcus pyogenes, was assessed in both liquid and vapour phases using the broth microdilution volatilisation (BMV) method. With the aim of optimising a protocol for the characterisation of EO vapours, their chemical profiles were determined using two headspace sampling techniques coupled with GC/MS: solid-phase microextraction (HS-SPME) and syringe headspace sampling technique (HS-GTS). All EO sample vapours exhibited antibacterial activity with minimum inhibitory concentrations (MIC) ranging from 512 to 1024 μg/mL. According to the sampling technique used, results showed a different distribution of volatile compounds. Notably, thymol was found in lower amounts in the headspace—peak percentage areas below 5.27% (HS-SPME) and 0.60% (HS-GTS)—than in EOs (max. 48.65%), suggesting that its antimicrobial effect is higher in vapour. Furthermore, both headspace sampling techniques were proved to be complementary for the analysis of EO vapours, whereas HS-SPME yielded more accurate qualitative results and HS-GTS proved a better technique for quantitative analysis.
Essential oils (EOs) have great potential in inhalation therapy for the treatment of respiratory infections. However, innovative methods for evaluation of antimicrobial activity of their vapors are still needed. The current study reports validation of the broth macrodilution volatilization method for assessment of the antibacterial properties of EOs and shows the growth-inhibitory effect of Indian medicinal plants against pneumonia-causing bacteria in liquid and vapor phase. Among all samples tested, Trachyspermum ammi EO exhibits the strongest antibacterial effect against Haemophilus influenzae, with minimum inhibitory concentrations of 128 and 256 µg/mL in the liquid and vapor phases, respectively. Furthermore, Cyperus scariosus EO is found to be nontoxic to normal lung fibroblasts assessed by modified thiazolyl blue tetrazolium bromide assay. Chemical analysis performed using gas chromatography–mass spectrometry identified α-citral, cyperotundone, and thymol as the main constituents of Cymbopogon citratus, C. scariosus, and T. ammi EOs, respectively. In addition, β-cymene is identified as the major compound of T. ammi EO vapors when analyzed using solid-phase microextraction and gas-tight syringe sampling techniques. This study demonstrates the validity of the broth macrodilution volatilization method for antimicrobial screening of volatile compounds in the vapor phase and suggests the therapeutic potential of Indian medicinal plants in inhalation therapy.
Essential oils (EOs) have great potential in inhalation therapy for the treatment of respiratory infections, however, innovative methods for evaluation of antimicrobial activity of their vapors are still needed. The current study reports validation of the broth macrodilution volatilization method for assessment of the antibacterial properties of EOs and shows growth-inhibitory effect of Indian medicinal plants against pneumonia-causing bacteria in liquid and vapor phase. Among all samples tested, Trachyspermum ammi EO exhibited the strongest antibacterial effect against Haemophilus influenzae, with minimum inhibitory concentrations of 128 and 256 µg/mL in the liquid and vapor phases, respectively. Furthermore, Cyperus scariosus EO was found to be non-toxic to normal lung fibroblasts were assessed by modified thiazolyl blue tetrazolium bromide assay. Chemical analysis performed using gas chromatography-mass spectrometry identified α-citral, cyperotundone, and thymol as the main constituents of Cymbopogon citratus, C. scariosus, and T. ammi EOs, respectively. In addition, β-cymene was identified as the major compound of T. ammi EO vapors when analyzed using solid-phase microextraction and gas-tight syringe sampling techniques. This study demonstrates the validity of the broth macrodilution volatilization method for antimicrobial screening of volatile compounds in the vapor phase and suggests the thera-peutic potential of Indian medicinal plants in inhalation therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.