High stability and efficiency are the main two objectives in the design of an axial-flow compressor. Stability usually reduces at higher stage loading, and the stability margin critically drops in transient operation and through the life cycle of an engine. A major reason for this to happen is the growing tip gap. A recirculating tip blowing casing treatment has shown the ability to enhance stability. To be able to use it as a stability control system at varying tip clearances in aircraft engines, the behavior of this casing treatment at different tip clearances was considered important and investigated in this paper. The present study investigates in depth the ability of a tip blowing casing treatment to postpone stall at three different tip clearances. The results prove a substantial beneficial effect for design and increased tip gaps and show some negative impact of the casing treatment for a small tip gap. The study is carried out on a 1.5 stage research compressor. The investigated rotor was already investigated with an axial-slot casing treatment for different tip gap heights at the Institute for Flight Propulsion. The design of a recirculating tip blowing casing treatment is simulated with an equivalent numerical setup. A tip blowing casing treatment consists of a bleed port connected to a tip blowing upstream of the rotor. The streamwise pressure gradient drives the tip blowing with a high injection velocity. A design speed line is simulated for three tip clearance values with and without the tip blowing casing treatment. The impact of the interaction between the tip blowing and the tip gap vortex is analyzed. A detailed analysis of the passage flow is conducted. A comparison of the stall margin is made. The study is carried out using URANS simulations.
A state-of-the-art transonic compressor rotor has a distinct potential for increased efficiency if modified for improved interaction with an axial-slot type casing treatment. Reducing the number of blades and thus the surface lowers friction losses but increases tip clearance effects and deteriorates the stall margin due to the higher aerodynamic blade loading. The latter two negative effects can be compensated for by the casing treatment, thus restoring the required stall margin and gaining an overall reduction of losses. For the specific compressor rotor under investigation, the potential in polytropic efficiency is as high as 0.7%. The present study was performed using time-accurate CFD (URANS) simulations. Both the reference rotor as well as the modified design are analyzed regarding their interaction with the casing treatment. The traceability of the conclusions is assured by interpreting the detailed flow phenomena. The newly designed rotor is found to be favorably influenced by the casing treatment at design operating conditions whilst the reference only benefits at throttled operating points. Casing treatments are commonly used to broaden the operating range of existing compressors without changing the design of the compressor rotor itself. This study aims to show the possible transformation of this potential in the stall margin into efficiency at design operating conditions by implementing an appropriate rotor design.
The numerical and experimental investigation of non-axisymmetric casing treatments is complex compared to axisymmetric ones like circumferential grooves. Hence they are still rarely investigated, at least regarding combinations of numerical and experimental work on the same configuration. The casing treatment under investigation is capable of significantly broadening the operating range of a tip-critical transonic compressor. This is accomplished without an efficiency penalty at design conditions. It is demonstrated that the application of a casing treatment over the rotor might impose negative effects on the downstream stator that would have to be considered in future designs. Earlier work by the authors was focused on the experimental investigation, in particular of transient effects near stall. In this paper, RANS and URANS simulations are presented in detail. These are used to further study and explain the causes of the effects that were found experimentally. Additional experimental data are added where appropriate, continuing the validation of the numerical methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.