ABSTRACT:With the growth of networked computers and associated applications, intrusion detection has become essential to keeping networks secure. A number of intrusion detection methods have been developed for protecting computers and networks using conventional statistical methods as well as data mining methods. It is necessary that the capabilities of intrusion detection methods be updated with the creation of new attacks. This paper proposes a hybrid intrusion detection method that uses a combination of supervised and outlier based methods for improving the efficiency of detection of new and old attacks. The method is evaluated with the benchmark intrusion dataset called the knowledge discovery and data mining Cup 1999 dataset and the new version of KDD (NSL-KDD) dataset. Thus the performance of our method is very good.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.