In this work the purely electro-osmotic flow of a viscoelastic liquid, which obeys the simplified Phan-Thien–Tanner (sPTT) constitutive equation, is solved numerically and asymptotically by using the lubrication approximation. The analysis includes Joule heating effects caused by an imposed electric field, where the viscosity function, relaxation time and electrical conductivity of the liquid are assumed to be temperature-dependent. Owing to Joule heating effects, temperature gradients in the liquid make the fluid properties change within the microchannel, altering the electric potential and flow fields. A consequence of the above is the appearance of an induced pressure gradient along the microchannel, which in turn modifies the normal plug-like electro-osmotic velocity profiles. In addition, it is pointed out that, depending on the fluid rheology and the used values of the dimensionless parameters, the velocity, temperature and pressure profiles in the fluid are substantially modified. Also, the finite thermal conductivity of the microchannel wall was considered in the analysis. The dimensionless temperature profiles in the fluid and the microchannel wall are obtained as function of the dimensionless parameters involved in the analysis, and the interactions between the coupled momentum, thermal energy and potential electric equations are examined in detail. A comparison between the numerical predictions and the asymptotic solutions was made, and reasonable agreement was found.
In this work, we conduct a theoretical analysis of the start-up of an oscillatory electroosmotic flow (EOF) in a parallel-plate microchannel under asymmetric zeta potentials. It is found that the transient evolution of the flow field is controlled by the parameters R w , R z , and k ¯, which represent the dimensionless frequency, the ratio of the zeta potentials of the microchannel walls, and the electrokinetic parameter, which is defined as the ratio of the microchannel height to the Debye length. The analysis is performed for both low and high zeta potentials; in the former case, an analytical solution is derived, whereas in the latter, a numerical solution is obtained. These solutions provide the fundamental characteristics of the oscillatory EOFs for which, with suitable adjustment of the zeta potential and the dimensionless frequency, the velocity profiles of the fluid flow exhibit symmetric or asymmetric shapes.
The dispersion coefficient of a passive solute in a steady-state pure electro-osmotic flow (EOF) of a viscoelastic liquid, whose rheological behaviour follows the simplified Phan-Thien–Tanner (sPTT) model, along a parallel flat plate microchannel, is studied. The walls of the microchannel are assumed to have modulated and low $\unicode[STIX]{x1D701}$ potentials, which vary slowly in the axial direction in a sinusoidal manner. The flow field required to obtain the dispersion coefficient was solved using the lubrication approximation theory (LAT). The solution of the electric potential is based on the Debye–Hückel approximation for a symmetric $(z:z)$ electrolyte. The viscoelasticity of the fluid is observed to notably amplify the axial distribution of the effective dispersion coefficients due to the variation in the $\unicode[STIX]{x1D701}$ potentials of the walls. The problem was formulated for two cases: when the Debye layer thickness (EDL) was on the order of unity (thick EDL) and in the limit where the thickness of the EDL was very small compared with the height of the microchannel (thin EDL limit). Due to the coupling between the nonlinear governing equations and the sPTT fluid model, they were replaced by their approximate linearized forms and solved in the limit of $\unicode[STIX]{x1D700}\ll 1$ using the regular perturbation technique. Here $\unicode[STIX]{x1D700}$ is the amplitude of the sinusoidal function of the $\unicode[STIX]{x1D701}$ potentials. Additionally, the numerical solution of the simplified governing equations was also obtained for $\unicode[STIX]{x1D700}=O(1)$ and compared with the approximate solution, showing excellent agreement for $0\leqslant \unicode[STIX]{x1D700}\leqslant 0.3$. Note that the dispersion coefficient primarily depends on the Deborah number, on the ratio of the half-height of the microchannel to the Debye length, and on the assumed variation in the $\unicode[STIX]{x1D701}$ potentials of the walls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.