In this research, we proposed a novel 14-layered deep convolutional neural network (14-DCNN) to detect plant leaf diseases using leaf images. A new dataset was created using various open datasets. Data augmentation techniques were used to balance the individual class sizes of the dataset. Three image augmentation techniques were used: basic image manipulation (BIM), deep convolutional generative adversarial network (DCGAN) and neural style transfer (NST). The dataset consists of 147,500 images of 58 different healthy and diseased plant leaf classes and one no-leaf class. The proposed DCNN model was trained in the multi-graphics processing units (MGPUs) environment for 1000 epochs. The random search with the coarse-to-fine searching technique was used to select the most suitable hyperparameter values to improve the training performance of the proposed DCNN model. On the 8850 test images, the proposed DCNN model achieved 99.9655% overall classification accuracy, 99.7999% weighted average precision, 99.7966% weighted average recall, and 99.7968% weighted average F1 score. Additionally, the overall performance of the proposed DCNN model was better than the existing transfer learning approaches.
In this research, we proposed a Deep Convolutional Neural Network (DCNN) model for image-based plant leaf disease identification using data augmentation and hyperparameter optimization techniques. The DCNN model was trained on an augmented dataset of over 240,000 images of different healthy and diseased plant leaves and backgrounds. Five image augmentation techniques were used: Generative Adversarial Network, Neural Style Transfer, Principal Component Analysis, Color Augmentation, and Position Augmentation. The random search technique was used to optimize the hyperparameters of the proposed DCNN model. This research shows the significance of choosing a suitable number of layers and filters in DCNN development. Moreover, the experimental outcomes illustrate the importance of data augmentation techniques and hyperparameter optimization techniques. The performance of the proposed DCNN was calculated using different performance metrics such as classification accuracy, precision, recall, and F1-Score. The experimental results show that the proposed DCNN model achieves an average classification accuracy of 98.41% on the test dataset. Moreover, the overall performance of the proposed DCNN model was better than that of advanced transfer learning and machine learning techniques. The proposed DCNN model is useful in the identification of plant leaf diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.