Cell-to-cell progression of tobacco mosaic virus (TMV) infection in plants depends on virus-encoded movement protein (MP). Here we show that a conserved sequence motif in tobamovirus MPs shares similarity with a region in tubulins that is proposed to mediate lateral contacts between microtubule protofilaments. Point mutations in this motif confer temperature sensitivity to microtubule association and viral-RNA intercellular-transport functions of the protein, indicating that MP-interacting microtubules are functionally involved in the transport of vRNA to plasmodesmata. Moreover, we show that MP interacts with microtubule-nucleation sites. Together, our results indicate that MP may mimic tubulin assembly surfaces to propel vRNA transport by a dynamic process that is driven by microtubule polymerization.
SummaryFunctional studies of Tobacco mosaic virus (TMV) infection using virus derivatives expressing functional, dysfunctional, and temperature-sensitive movement protein (MP) mutants indicated that the cell-to-cell transport of TMV RNA is functionally correlated with the association of MP with microtubules. However, the role of microtubules in the movement process during early infection remains unclear, since MP accumulates on microtubules rather late in infection and treatment of plants with microtubule-disrupting agents fails to strongly interfere with cell-to-cell movement of TMV RNA. To further test the role of microtubules in TMV cellto-cell movement, we investigated TMV strain Ni2519, which is temperature-sensitive for movement. We demonstrate that the temperature-sensitive defect in movement is correlated with temperature-sensitive changes in the localization of MP to microtubules. Furthermore, we show that during early phases of recovery from non-permissive conditions, the MP localizes to microtubule-associated particles. Similar particles are found in cells at the leading front of spreading TMV infection sites. Initially mobile, the particles become immobile when MP starts to accumulate along the length of the particle-associated microtubules. Our observations confirm a role for microtubules in the spread of TMV infection and associate this role with microtubule-associated trafficking of MP-containing particles in cells engaged in the cell-to-cell movement of the TMV genome.
The cell-to-cell spread of Tobacco mosaic virus infection depends on virus-encoded movement protein (MP), which is believed to form a ribonucleoprotein complex with viral RNA (vRNA) and to participate in the intercellular spread of infectious particles through plasmodesmata. Previous studies in our laboratory have provided evidence that the vRNA movement process is correlated with the ability of the MP to interact with microtubules, although the exact role of this interaction during infection is not known. Here, we have used a variety of in vivo and in vitro assays to determine that the MP functions as a genuine microtubule-associated protein that binds microtubules directly and modulates microtubule stability. We demonstrate that, unlike MP in whole-cell extract, microtubule-associated MP is not ubiquitinated, which strongly argues against the hypothesis that microtubules target the MP for degradation. In addition, we found that MP interferes with kinesin motor activity in vitro, suggesting that microtubule-associated MP may interfere with kinesin-driven transport processes during infection.
RDL receptors are GABA-activated inhibitory Cys-loop receptors found throughout the insect CNS. They are a key target for insecticides. Here, we characterize the GABA binding site in RDL receptors using computational and electrophysiological techniques. A homology model of the extracellular domain of RDL was generated and GABA docked into the binding site. Molecular dynamics simulations predicted critical GABA binding interactions with aromatic residues F206, Y254, and Y109 and hydrophilic residues E204, S176, R111, R166, S176, and T251. These residues were mutated, expressed in Xenopus oocytes, and their functions assessed using electrophysiology. The data support the binding mechanism provided by the simulations, which predict that GABA forms many interactions with binding site residues, the most significant of which are cation-π interactions with F206 and Y254, H-bonds with E204, S205, R111, S176, T251, and ionic interactions with R111 and E204. These findings clarify the roles of a range of residues in binding GABA in the RDL receptor, and also show that molecular dynamics simulations are a useful tool to identify specific interactions in Cys-loop receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.