Because of its unique physical properties, graphene, a 2D honeycomb arrangement of carbon atoms, has attracted tremendous attention. Silicene, the graphene equivalent for silicon, could follow this trend, opening new perspectives for applications, especially due to its compatibility with Si-based electronics. Silicene has been theoretically predicted as a buckled honeycomb arrangement of Si atoms and having an electronic dispersion resembling that of relativistic Dirac fermions. Here we provide compelling evidence, from both structural and electronic properties, for the synthesis of epitaxial silicene sheets on a silver (111) substrate, through the combination of scanning tunneling microscopy and angular-resolved photoemission spectroscopy in conjunction with calculations based on density functional theory.
Multilayer silicene, the silicon analogue of multilayer graphene, grown on silver (111) surfaces, possesses a honeycomb (ͱ3 Â ͱ3)R30 reconstruction, observed by scanning tunnelling microscopy at room temperature, past the initial formation of the dominant, 3Â3 reconstructed, silicene monolayer. For a few layers silicene film we measure by synchrotron radiation photoelectron spectroscopy, a cone-like dispersion at the Brillouin zone centre due to band folding. p* and p states meet at $0.25 eV below the Fermi level, providing clear evidence of the presence of gapless Dirac fermions. V
The Sn͞Ge(111) interface has been investigated across the 3 3 3 ! p 3 3 p 3 R30 ± phase transition using core level and valence band photoemission spectroscopies. We find, both above and below the transition, two different components in the Sn 4d core level and a band splitting in the surface state crossing the Fermi energy. Theoretical calculations show that these two effects are due to the existence of two structurally different kinds of Sn atoms that fluctuate at room temperature between two positions and are stabilized in a 3 3 3 structure at low temperature. [S0031-9007(98)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.