These results are consistent with specific clinical features related to the MYBPC3 gene: onset of the disease appears delayed and the prognosis is better than that associated with the beta-MHC gene. These findings could be particularly important for the purpose of clinical management and genetic counseling in familial hypertrophic cardiomyopathy.
Cardiac myosin binding protein C (MyBP-C) is a sarcomeric protein belonging to the intracellular immunoglobulin superfamily. Its function is uncertain, but for a decade evidence has existed for both structural and regulatory roles. The gene encoding cardiac MyBP-C (MYBPC3) in humans is located on chromosome 11p11.2, and mutations have been identified in this gene in unrelated families with familial hypertrophic cardiomyopathy (FHC). Detailed characterization of the MYBPC3 gene is essential for studies on gene regulation, analysis of the role of MyBP-C in cardiac contraction through the use of recombinant DNA technology, and mutational analyses of FHC. The organization of human MYBPC3 and screening for mutations in a panel of French families with FHC were established using polymerase chain reaction, single-strand conformation polymorphism, and sequencing. The MYBPC3 gene comprises >21 000 base pairs and contains 35 exons. Two exons are unusually small in size, 3 bp each. We found six new mutations associated with FHC in seven unrelated French families. Four of these mutations are predicted to produce truncated cardiac MyBP-C polypeptides. The two others should each produce two aberrant proteins, one truncated and one mutated. The present study provides the first organization and sequence for an MyBP-C gene. The mutations reported here and previously in MYBPC3 result in aberrant transcripts that are predicted to encode significantly truncated cardiac MyBP-C polypeptides. This spectrum of mutations differs from the ones previously observed in other disease genes causing FHC. Our data strengthen the functional importance of MyBP-C in the regulation of cardiac work and provide the basis for further studies.
Endothelium-derived NO is considered to be primarily an important determinant of vascular tone and platelet activity; however, the modulation of myocardial metabolism by NO may be one of its most important roles. This modulation may be critical for the regulation of tissue metabolism. Several physiological processes act in concert to make endothelial NO synthase-derived NO potentially important in the regulation of mitochondrial respiration in cardiac tissue, including (1) the nature of the capillary network in the myocardium, (2) the diffusion distance for NO, (3) the low toxicity of NO at physiological (nanomolar) concentrations, (4) the fact that low PO(2) in tissue facilitates the action of NO on cytochrome oxidase, and (5) the formation of oxygen free radicals. A decrease in NO production is involved in the pathophysiological modifications that occur in heart failure and diabetes, disease states associated with altered cardiac metabolism that contributes to the evolution of the disease process. In contrast, several drugs (eg, angiotensin-converting enzyme inhibitors, amlodipine, and statins) can restore or maintain endogenous production of NO by endothelial cells, and this mechanism may explain part of their therapeutic efficiency. Thus, the purpose of this review is to critically evaluate the role of NO in the control of mitochondrial respiration, with special emphasis on its effect on cardiac metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.