On a nutritional standpoint, lipids are now being studied beyond their energy content and fatty acid (FA) profiles. Dietary FA are building blocks of a huge diversity of more complex molecules such as triacylglycerols (TAG) and phospholipids (PL), themselves organised in supramolecular structures presenting different thermal behaviours. They are generally embedded in complex food matrixes. Recent reports have revealed that molecular and supramolecular structures of lipids and their liquid or solid state at the body temperature influence both the digestibility and metabolism of dietary FA. The aim of the present review is to highlight recent knowledge on the impact on FA digestion, absorption and metabolism of: (i) the intramolecular structure of TAG; (ii) the nature of the lipid molecules carrying FA; (iii) the supramolecular organization and physical state of lipids in native and formulated food products and (iv) the food matrix. Further work should be accomplished now to obtain a more reliable body of evidence and integrate these data in future dietary recommendations. Additionally, innovative lipid formulations in which the health beneficial effects of either native or recomposed structures of lipids will be taken into account can be foreseen.
Bis(monoacylglycero)phosphate (BMP) is a unique phospholipid (PL) preferentially found in late endosomal membranes, where it forms specialized lipid domains. Recently, using cultured macrophages treated with anti-BMP antibody, we showed that BMP-rich domains are involved in cholesterol homeostasis. We had previously stressed the high propensity of BMP to accumulate docosahexaenoic acid (DHA), compared with other PUFAs. Because phosphatidylglycerol (PG) was reported as a precursor for BMP synthesis in RAW macrophages, we examined the effects of PG supplementation on both FA composition and amount of BMP in this cell line. Supplementation with dioleoyl-PG (18:1/18:1-PG) induced BMP accumulation, together with an increase of oleate proportion. Supplementation with high concentrations of didocosahexaenoyl-PG (22:6/22:6-PG) led to a marked enrichment of DHA in BMP, resulting in the formation of diDHA molecular species. However, the amount of BMP was selectively decreased. Similar effects were observed after supplementation with high concentrations of nonesterified DHA. Addition of vitamin E prevented the decrease of BMP and further increased its DHA content. Supplementation with 22:6/22:6-PG promoted BMP accumulation with an enhanced proportion of 22:6/22:6-BMP. DHA-rich BMP was significantly degraded after cell exposure to oxidant conditions, in contrast to oleic acid-rich BMP, which was not affected. Using a cell-free system, we showed that 22:6/22:6-BMP is highly oxidizable and partially protects cholesterol oxidation, compared with 18:1/18:1-BMP. Our data suggest that high DHA content in BMP led to specific degradation of this PL, possibly through the diDHA molecular species, which is very prone to peroxidation and, as such, a potential antioxidant in its immediate
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.