Previous studies indicate that both electroencephalogram (EEG) spectral power (in particular the alpha and theta band) and event-related potentials (ERPs) (in particular the P300) can be used as a measure of mental work or memory load. We compare their ability to estimate workload level in a well-controlled task. In addition, we combine both types of measures in a single classification model to examine whether this results in higher classification accuracy than either one alone. Participants watched a sequence of visually presented letters and indicated whether or not the current letter was the same as the one (n instances) before. Workload was varied by varying n. We developed different classification models using ERP features, frequency power features or a combination (fusion). Training and testing of the models simulated an online workload estimation situation. All our ERP, power and fusion models provide classification accuracies between 80% and 90% when distinguishing between the highest and the lowest workload condition after 2 min. For 32 out of 35 participants, classification was significantly higher than chance level after 2.5 s (or one letter) as estimated by the fusion model. Differences between the models are rather small, though the fusion model performs better than the other models when only short data segments are available for estimating workload.
Brain-Computer Interfaces (BCIs) carry the promise of natural and intuitive human-computer interaction. BCI technology has matured to the extent that it is available for home use. While most BCI technology was developed for medical applications, we identify 7 non-medical applications including device control, user state monitoring and gaming. We rate these on amongst others societal impact and time to market. Breakthroughs are required in the areas of usability, hardware and software, and system integration, but for successful development should also take user characteristics and acceptance into account. We discuss areas of concern like the lack of standardization and provide 10 recommendations to push the field forward.
Touch is our primary non-verbal communication channel for conveying intimate emotions and as such essential for our physical and emotional wellbeing. In our digital age, human social interaction is often mediated. However, even though there is increasing evidence that mediated touch affords affective communication, current communication systems (such as videoconferencing) still do not support communication through the sense of touch. As a result, mediated communication does not provide the intense affective experience of co-located communication. The need for ICT mediated or generated touch as an intuitive way of social communication is even further emphasized by the growing interest in the use of touch-enabled agents and robots for healthcare, teaching, and telepresence applications. Here, we review the important role of social touch in our daily life and the available evidence that affective touch can be mediated reliably between humans and between humans and digital agents. We base our observations on evidence from psychology, computer science, sociology, and neuroscience with focus on the first two. Our review shows that mediated affective touch can modulate physiological responses, increase trust and affection, help to establish bonds between humans and avatars or robots, and initiate pro-social behavior. We argue that ICT mediated or generated social touch can (a) intensify the perceived social presence of remote communication partners and (b) enable computer systems to more effectively convey affective information. However, this research field on the crossroads of ICT and psychology is still embryonic and we identify several topics that can help to mature the field in the following areas: establishing an overarching theoretical framework, employing better research methodologies, developing basic social touch building blocks, and solving specific ICT challenges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.