This paper presents experiments on planar monopolar vortex structures generated in a non-rotating, stratifi ed fluid. In order to study the dynamics of such planar vortices in the laboratory, angular momentum was generated in a specifi c horizontal layer of the stratifi ed fl uid, by using three different generation mechanisms. The lens-shaped monopolar vortices thus created were in some cases stable and conserved their circular symmetry, while in other cases they appeared to be unstable, leading to the formation of a multipoled vortex with a different topology. Characteristics such as cross-sectional profiles (angular velocity and vorticity) and vorticity-stream function scatter plots have been measured experimentally by using digital image processing techniques. The characteristics of the monopolar vortices are compared with analytical vortex models known from literature. Simple models, based on vertical diffusion of vorticity, are proposed to describe the monopolar vortex decay ; they show reasonable agreement with the experimental results. From the multipolar structures, the tripolar vortex and a specific case of a triangular vortex, neither having been observed before in a stratified fluid, are studied in detail. A comparison with point-vortex models yields good agreement. Although these multipolar vortices appear to persist for a long while, they are found eventually to be unstable and to transform into a monopolar vortex.
DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
In this paper the viscous decay of dipolar vortex structures in a linearly stratified fluid is investigated experimentally, and a comparison of the experimental results with simple theoretical models is made. The dipoles are generated by a pulsed horizontal injection of fluid. In a related experimental study by F16r and van Heijst [J. Fluid Mech. 279, 101 (1994)], it was shown that, after the emergence of the pancake-shaped vortex structure, the flow is quasi-two-dimensional and decays due to the vertical diffusion of vorticity and entrainment of ambient irrotational fluid. This results in an expansion of the vortex structure. TWO decay models with the horizontal flow based on the viscously decaying Lamb-Chaplygin dipole, are presented. In a first model, the thickness and radius of the dipole are assumed constant, and in a second model also the increasing thickness of the vortex structure is taken into account. The models are compared with experimental data obtained from flow visualizations and from digital analysis of particle-streak photographs. Although both models neglect entrainment and the decay is modeled by diffusion only, a reasonable agreement with the experiments is obtained. 0 1995 American Institute of Physics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.