Aims. The EROS-2 project was designed to test the hypothesis that massive compact halo objects (the so-called "machos") could be a major component of the dark matter halo of the Milky Way galaxy. To this end, EROS-2 monitored over 6.7 years 33 × 10 6 stars in the Magellanic clouds for microlensing events caused by such objects. Methods. In this work, we use only a subsample of 7 × 10 6 bright stars spread over 84 deg 2 of the LMC and 9 deg 2 of the SMC. The strategy of using only bright stars helps to discriminate against background events due to variable stars and allows a simple determination of the effects of source confusion (blending). The use of a large solid angle makes the survey relatively insensitive to effects that could make the optical depth strongly direction dependent. Results. Using this sample of bright stars, only one candidate event was found, whereas ∼39 events would have been expected if the Halo were entirely populated by objects of mass M ∼ 0.4 M . Combined with the results of EROS-1, this implies that the optical depth toward the Large Magellanic Cloud (LMC) due to such lenses is τ < 0.36 × 10 −7 (95% CL), corresponding to a fraction of the halo mass of less than 8%. This optical depth is considerably less than that measured by the MACHO collaboration in the central region of the LMC. More generally, machos in the mass range 0.6 × 10 −7 M < M < 15 M are ruled out as the primary occupants of the Milky Way Halo.
3It is now accepted that long duration γ-ray bursts (GRBs) are produced during the collapse of a massive star 1,2 . 11,12 . GRB 060505 was a faint burst with a duration of 4 s. GRB 060614 had a duration of 102 s and a pronounced hard to soft evolution. Both were rapidly localised by Swift's X-ray telescope (XRT). Subsequent follow-up of these bursts led to the discovery of their optical afterglows, locating them in galaxies at low redshift: GRB 060505 at z = 0.089 13 and GRB 060614 at z = 0.125 14,15 . The relative proximity of these bursts engendered an expectation that a bright SN would be discovered a few days after the bursts, as had been found just a few months before in 4 another low-redshift Swift burst, GRB 060218 (z = 0.033) 9 , and in all previous wellobserved nearby bursts 1,5-8 .We monitored the afterglows of GRB 060505 and 060614 using a range of telescopes (see supplementary material for details). These led to early detections of the afterglows. We continued the monitoring campaign and obtained stringent upper limits on any re-brightening at the position of the optical afterglows up to 12 and 5 weeks after the bursts, respectively. The light-curves obtained based on this monitoring are shown in Fig. 1. For GRB 060505 we detected the optical afterglow at a single epoch. All subsequent observations resulted in deep upper limits. For GRB 060614 we followed the decay of the optical afterglow in the R-band up to four nights after the burst. In later observations no source was detected to deep limits (see also 14,15 for independent studies of this event). As seen in Fig. 1, the upper limits are far below the level seen in previous SNe, in particular previous SNe associated with long-duration GRBs 5-9 . For both GRBs A concern in any attempt to uncover a SN associated with a GRB is the presence of a poorly quantified level of extinction along the line of sight. In these cases however,we are fortunate that the levels of Galactic extinction in both directions are very low,. In the case of GRB 060505, our spatially resolved spectroscopy of the host galaxy allows us to use the Balmer emission line ratios to limit the dust obscuration 5 at the location of the burst. The Balmer line ratio is consistent with no internal reddening. In the case of GRB 060614, the detection of the early afterglow in many bands, including the Swift UV bands UVW1 and UVW2 17 , rules out significant obscuration of the source in the host galaxy and we conclude that there is no significant dust obscuration in either case (see also 15 ).Both GRBs were located in star-forming galaxies. The host galaxy of GRB 060505 has an absolute magnitude of about M B = -19.6 and the spectrum displays the prominent emission lines typically seen in star-forming galaxies. The 2-dimensional spectrum shows that the host galaxy emission seen at the position of the afterglow is due to a compact H II region in a spiral arm of the host (see the supplementary material for details). We estimate a star-formation rate of 1 M yr −1 and a specific rate of about 4T...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.