We completely characterize the appearance of Schur functions corresponding to partitions of the form $\nu = (1^a, b)$ (hook shapes) in the Schur function expansion of the plethysm of two Schur functions, $$s_\lambda[s_\mu] = \sum_{\nu} a_{\lambda, \mu, \nu} s_\nu.$$ Specifically, we show that no Schur functions corresponding to hook shapes occur unless $\lambda$ and $\mu$ are both hook shapes and give a new proof of a result of Carbonara, Remmel and Yang that a single hook shape occurs in the expansion of the plethysm $s_{(1^c, d)}[s_{(1^a, b)}]$. We also consider the problem of adding a row or column so that $\nu$ is of the form $(1^a,b,c)$ or $(1^a, 2^b, c)$. This proves considerably more difficult than the hook case and we discuss these difficulties while deriving explicit formulas for a special case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.