In this study, we analyse the kinematics and dynamics of a homogeneous sample of red clump stars, selected from the second Gaia data release catalogue in the direction of the Galactic poles, at five different positions in the plane. The level of completeness of the sample at heights between 0.6 and 3.5 kpc was asserted through a comparison with the 2 Micron All Sky Survey catalogue. We show that both the density distribution and velocity dispersion are significantly more perturbed in the north than in the south in all analysed regions of our Galactic neighbourhoods. We provide a detailed assessment of these north-south asymmetries at large heights, which can provide useful constraints for models of the interaction of the Galactic disc with external perturbers. We proceeded to evaluate how such asymmetries could affect determinations of the dynamical matter density under equilibrium assumptions. We find that a Jeans analysis delivers relatively similar vertical forces and integrated dynamical surface densities at large heights above the plane in both hemispheres. At these heights, the densities of stars and gas are very low and the surface density is largely dominated by dark matter (DM), which allows us to estimate, separately in the north and in the south, the local dark matter density derived under equilibrium assumptions. In the presence of vertical perturbations, such values should be considered as an upper limit. This Jeans analysis yields values of the local dark matter density above 2 kpc, namely, ρDM ∼ 0.013 M⊙ pc−3 (∼0.509 GeV cm−3) in the perturbed northern hemisphere and ρDM ∼ 0.010 M⊙ pc−3 (∼0.374 GeV cm−3) in the much less perturbed south. As a comparison, we determine the local dark matter density by fitting a global phase-space distribution to the data. We end up with a value in the range of ρDM ∼ 0.011−0.014 M⊙ pc−3, which is in global agreement with the Jeans analysis. These results call for the further development of non-equilibrium methods with the aim of obtaining a more precise estimate for the dynamical matter density in the Galactic disc.
We present a dynamical measurement of the tangential motion of the Andromeda system, the ensemble consisting of the Andromeda Galaxy (M31) and its satellites. The system is modelled as a structure with cosmologically-motivated velocity dispersion and density profiles, and we show that our method works well when tested using the most massive substructures in high-resolution Λ Cold Dark Matter (ΛCDM) simulations. Applied to the sample of 40 currently-known galaxies of this system, we find a value for the transverse velocity of 164.4 ± 61.8 km s −1 (v East = -111.5 ± 70.2 km s −1 and v N orth = 99.4 ± 60.0 km s −1 ), significantly higher than previous estimates of the proper motion of M31 itself. This result has significant implications on estimates of the mass of the Local Group, as well as on its past and future history.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.