A large number of Fusarium graminearum and F. asiaticum isolates were collected from wheat spikes from all regions in China with a history of fusarium head blight (FHB) epidemics. Isolates were analysed to investigate their genetic diversity and geographic distribution. Sequence characterized amplified region (SCAR) analyses of 437 isolates resolved both species, with 21% being F. graminearum (SCAR type 1) and 79% being F. asiaticum (SCAR type 5). AFLP profiles clearly resolved two groups, A and B, that were completely congruent with both species. However, more diversity was detected by AFLP, revealing several subgroups within each group. In many cases, even for isolates from the same district, AFLP haplotypes differed markedly. Phylogenetic analyses of multilocus DNA sequence data indicated that all isolates of SCAR type 1, AFLP group A were F. graminearum , whilst isolates of SCAR type 5, AFLP group B were F. asiaticum , demonstrating that it is an efficient method for differentiating these two species. Both species seem to have different geographic distributions within China. Fusarium graminearum was mainly obtained from wheat growing in the cooler regions where the annual average temperature was 15 ° C or lower. In contrast, the vast majority of F. asiaticum isolates were collected from wheat growing in the warmer regions where the annual average temperature is above 15 ° C and where FHB epidemics occur most frequently. This is the first report of the distribution of, and genetic diversity within, F. graminearum and F. asiaticum on wheat spikes throughout China.
The genetic diversity and pathogenicity of isolates of Fusarium graminearum and F. asiaticum isolated from wheat heads in China were examined and compared with those of isolates of F. graminearum, F. asiaticum and F. meridionale from Europe, USA and Nepal. Genetic diversity was assessed by SSCP (single strand conformation polymorphism) and AFLP (amplified fragment length polymorphism) analysis and by molecular chemotyping. SSCP analysis of the Fg16F/Fg16R PCR amplicon differentiated F. graminearum, F. asiaticum and F. meridionale and revealed three haplotypes among sequence‐characterized amplified region (SCAR) type 1 F. graminearum isolates. AFLP analysis showed a high level of genetic diversity and clustered the majority of Chinese isolates in one group along with other isolates of Asian origin. The second cluster contained F. graminearum isolates from China, Europe and the USA. Of the Chinese isolates, 79% were F. asiaticum and 81% of these were of the 3‐AcDON chemotype, with only 9·5% of either chemotype 15‐AcDON or NIV. All the Chinese and USA isolates of F. graminearum were 15‐AcDON, whereas among the isolates from Europe, 21% were NIV and 8% were 3‐AcDON chemotype. No evidence was found for possible differences in aggressiveness between F. graminearum and F. asiaticum. Highly aggressive isolates were present in each region and no evidence was found for any association between aggressiveness and geographical origin or chemotype among the isolates examined. No difference was observed in pathogenicity towards wheat seedlings between Chinese isolates and those from Europe, the USA or Nepal.
A 1320-bp cDNA containing the full coding region of the porcine succinate dehydrogenase complex, subunit D (SDHD) gene was obtained by random sequencing of clones from a Chinese Tongcheng pig 55-day fetal longissimus dorsi muscle cDNA library. Analysis of the SDHD gene across the INRA-University of Minnesota porcine radiation hybrid panel indicated close linkage with microsatellite marker SW2401, located on SSC9p21. The open reading frame of this cDNA covers 480 bp and encodes 159 amino acids. The deduced porcine amino acid sequence showed greater similarity with human and bovine protein sequences than with those from mouse and rat. The BLAST analysis of the porcine SDHD to NCBI identified Unigene Cluster Ssc.2586. Possible single nucleotide polymorphisms (SNP) were identified by alignment of expressed sequence tags in the cluster. The polymerase chain reaction (PCR) single strand conformation polymorphism, sequencing, and PCR restriction fragment length polymorphism were used to confirm and detect a synonymous polymorphic MboI site within the open-reading frame. Allele frequencies of this SNP were investigated in two commercial and five Chinese local pig breeds. These five Chinese breeds had very high frequencies for one allele, whereas frequencies of both alleles were intermediate in Large White and Duroc. An association analysis suggested that different SDHD genotypes have significant differences in loin-muscle area (P < 0.01).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.