We investigated the effect of ventilation rate, ventilation configuration, fire elevation, and the presence of a plenum (suspended ceiling) on the fire compartment temperatures during forced ventilated methane gas fires (100-400 kW). We found that with low air-inlet positions, fires with ventilation rates greater than 2-3 times the stoichiometrically required air (referred to here as well-ventilated fires) produce twolayer temperature profiles; fires with a lower ventilation rate (underventilated fires) produce single-layer profiles with a temperature gradient. Higher temperatures throughout the enclosure are seen in underventilated fires as compared to well-ventilated fires. We observed that high air-inlet locations perturb the two-layer temperature profile of the well-ventilated fire, cooling the upper layer and heating the lower layer. For underventilated fires, high air-inlet locations lower temperatures in the enclosure but do not perturb the profile shape. Elevated fires and fires in a compartment with a plenum were seen to behave similarly for the same distance from fire base to ceiling, producing hotter layers the shorter the distance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.