A quantum mechanical treatment of the conduction electrons of a metal in a polarisable interface shows that they can make an appreciable contribution to the electrical capacitance. Results for six metals are given, showing how differences in metal properties account qualitatively for experimentally observed differences in interfacial capacities, when the solvent is replaced by a dielectric film. To justify the neglect of solvent structure when metal properties are treated, the coupling between metal and solvent is discussed for orientable point solvent dipoles, and for a representation of the solvent polarisation by a pair of charged planes. The electron profile affects the polarisation of the solvent near the point of zero charge, but the solvent structure has an almost negligible effect on the metal contribution to the capacity. One parameter in our model, the distance from metal ions to the first solvent layer, can be expected to vary as the interface is charged, due to changed bonding. Coupling by such an effect can be quite important, and severely decreases the variation of metal capacity with charge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.