The yellowing of paper on aging causes major aesthetic damages of cultural heritage. It is due to cellulose oxidation, a complex process with many possible products still to be clarified. By comparing ultraviolet-visible reflectance spectra of ancient and artificially aged modern papers with ab initio time-dependent density functional theory calculations, we identify and estimate the abundance of oxidized functional groups acting as chromophores and responsible of paper yellowing. This knowledge can be used to set up strategies and selective chemical treatments preventing paper yellowing.
In this paper, we present a new noninvasive and nondestructive approach to recover scattering and absorption coefficients from reflectance measurements of highly absorbing and optically inhomogeneous media. Our approach is based on the Yang and Miklavcic theoretical model of light propagation through turbid media, which is a generalization of the Kubelka-Munk theory, extended to accommodate optically thick samples. We show its applications to paper, a material primarily composed of a web of fibers of cellulose, whose optical properties are strongly governed by light scattering effects. Samples studied were ancient and industrial paper sheets, aged in different conditions and highly absorbing in the ultraviolet region. The recovered experimental absorptions of cellulose fibers have been compared to theoretical ab initio quantum-mechanical computational simulations carried out within time-dependent density functional theory. In this way, for each sample, we evaluate the absolute concentration of different kinds of oxidized groups formed upon aging and acting as chromophores causing paper discoloration. We found that the relative concentration of different chromophores in cellulose fibers depends on the aging temperature endured by samples. This clearly indicates that the oxidation of cellulose follows temperature-dependent reaction pathways. Our approach has a wide range of applications for cellulose-based materials, like paper, textiles, and other manufactured products of great industrial and cultural interest, and can potentially be extended to other strongly absorbing inhomogeneous materials
Paper is the most widely used writing support due to the remarkable properties of its principal componentcellulose -one of the most abundant biomaterials present on Earth. However, due to the complexity of the material, an exhaustive picture of its degradation pathways is still missing. In this paper, we will present recent results and progresses obtained in the comprehension of the role of cellulose oxidation in the yellowing of ancient paper. Visible and ultraviolet spectra of cellulose in ancient paper samples and reference modern samples artificially aged have been interpreted with the aid of ab-initio Time-Dependent Density Functional Theory calculations. Through the comparison of measured and calculated absorption spectra, several oxidized forms of cellulose polymers, acting as chromophores, and responsible for ancient paper yellowing were identified. The relative concentration of ketones and aldehydic groups depends on the environmental conditions in which samples were stored along their life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.