Semiclassical expansions derived in the framework of the Extended Thomas-Fermi approach for the kinetic energy density τ ( r) and the spin-orbit density J( r) as functions of the local density ρ( r) are used to determine the central nuclear potentials V n ( r) and V p ( r) of the neutron and proton distribution for effective interactions of the Skyrme type. We demonstrate that the convergence of the resulting semiclassical expansions for these potentials is fast and that they reproduce quite accurately the corresponding Hartree-Fock average fields.
The extended Gutzwiller trajectory approach is presented for the
semiclassical description of nuclear collective dynamics, in line with the main
topics of the fruitful activity of V.G. Solovjov. Within the Fermi-liquid
droplet model, the leptodermous effective surface approximation was applied to
calculations of energies, sum rules and transition densities for the
neutron-proton asymmetry of the isovector giant-dipole resonance and found to
be in good agreement with the experimental data. By using the Strutinsky shell
correction method, the semiclassical collective transport coefficients such as
nuclear inertia, friction, stiffness, and moments of inertia can be derived
beyond the quantum perturbation approximation of the response function theory
and the cranking model.The averaged particle-number dependence of the low-lying
collective vibrational states are described in good agreement with basic
experimental data, mainly due to an enhancement of the collective inertia as
compared to its irrotational flow value. Shell components of the moment of
inertia are derived in terms of the periodic-orbit free-energy shell
corrections. A good agreement between the semiclassical extended Thomas-Fermi
moments of inertia with shell corrections and the quantum results is obtained
for different nuclear deformations and particle numbers. Shell effects are
shown to be exponentially dampted out with increasing temperature in all the
transport coefficients.Comment: 83 pages, 39 figures, 4 tables, corrected typos and improved Englis
The moment of inertia for nuclear collective rotations is derived within a semiclassical approach based on the Inglis cranking and Strutinsky shell-correction methods, improved by surface corrections within the nonperturbative periodic-orbit theory.For adiabatic (statistical-equilibrium) rotations it was approximated by the generalized rigid-body moment of inertia accounting for the shell corrections of the particle density. An improved phase-space trace formula allows to express the shell components of the moment of inertia more accurately in terms of the free-energy shell correction. Evaluating their ratio within the extended Thomas-Fermi effective-surface approximation, one finds good agreement with the quantum calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.