Water limitation is a major production constraint for sugarcane worldwide. However, to date, there has been little investigation of patterns of genetic variation in the response to water stress in sugarcane. Field experiments were conducted over 3 years under fully irrigated and managed water stress conditions at two locations in Northern Queensland in Australia. Eighty-nine genetically diverse clones were evaluated for their yield performance and sugar attributes. Water stress treatments reduced cane yield [tonnes of cane per hectare (TCH)] and total dry matter (TDM) by 17-52% and 20-56%, respectively, compared with irrigated treatments in the same experiments. Nevertheless, there was little genotype×environment interaction variation for TCH, TDM, or commercial cane sugar (CCS), and hence high genetic correlations between the irrigated and water stress treatments across environments. Both commercial and unselected clones performed poorly under severe stress environments, while the commercial clones outperformed the unselected clones under mild and moderate stress conditions. The results presented here highlight the contribution of intrinsic potential yields (yield under well-irrigated conditions) of some selected and unselected clones to maintain relatively high productivity in a range of moderate stress conditions imposed. The physiological basis for the high genetic correlations is at present unclear, but some explanations are hypothesized. The choice of stress levels in selection trials would not appear to be a critical issue for sugarcane breeding programmes, at least for the early phases of selection, where similar ranking clones across a range of moderate water stresses may be expected.
Low temperature is a common production constraint in rice cultivation in temperate zones and high-elevation environments, with the potential to affect growth and development from germination to grain filling. There is a wide range of genotype-based differences in cold tolerance among rice varieties, these differences often reflecting growth conditions in the place of origin, as well as breeding history. However, improving low temperature tolerance of varieties has been difficult, due to a lack of clarity of the genetic basis to low temperature tolerance for different growth stages of the rice plant. Seeds or plants of 17 rice varieties of different origins were exposed to low temperature during germination (15°C), seedling, booting, and flowering stages (18.5°C), to assess their cold tolerance at different growth stages. Low temperature at the germination stage reduced both the percentage and speed of germination. Varieties from China (B55, Banjiemang, and Lijianghegu) and Hungary (HSC55) were more tolerant of low temperature than other varieties. Most of the varieties showed moderate levels of low temperature tolerance during the seedling stage, the exceptions being some varieties from Australia (Pelde, YRL39, and YRM64) and Africa (WAB160 and WAB38), which were susceptible to low temperature at the seedling stage. Low temperature at booting and flowering stages reduced plant growth and caused a significant decline in spikelet fertility. Some varieties from China (B55, Bangjiemang, Lijiangheigu), Japan (Jyoudeki), the USA (M103, M104), and Australia (Quest) were tolerant or moderately tolerant, while the remaining varieties were susceptible or moderately susceptible to low temperature at booting and flowering stages. Three varieties from China (B55, Lijianghegu, Banjiemang) and one from Hungary (HSC55) showed consistent tolerance to low temperature at all growth stages. These varieties are potentially important gene donors for breeding and genetic studies. The cold tolerance of the 17 rice varieties assessed at different growth stages was correlated. Screening for cold tolerance during early growth stages can therefore potentially be an effective way for assessing cold tolerance in breeding programs.
Fifty-one genotypes of sugarcane (Saccharum spp.) or closely related germplasm were evaluated in a pot experiment to examine genetic variation in transpiration efficiency. Significant variation in whole plant transpiration efficiency was observed, with the difference between lowest and highest genotypes being about 40% of the mean. Leaf gas exchange measurements were made across a wide range of conditions. There was significant genetic variation in intrinsic transpiration efficiency at a leaf level as measured by leaf internal CO2 (Ci) levels. Significant genetic variation in Ci was also observed within subsets of data representing narrow ranges of stomatal conductance. Ci had a low broad sense heritability (Hb = 0.11) on the basis of single measurements made at particular dates, because of high error variation and genotype × date interaction, but broad sense heritability for mean Ci across all dates was high (Hb = 0.81) because of the large number of measurements taken at different dates. Ci levels among genotypes at mid-range levels of conductance had a strong genetic correlation (−0.92 ± 0.30) with whole plant transpiration efficiency but genetic correlations between Ci and whole plant transpiration efficiency were weaker or not significant at higher and lower levels of conductance. Reduced Ci levels at any given level of conductance may result in improved yields in water-limited environments without trade-offs in rates of water use and growth. Targeted selection and improvement of lowered Ci per unit conductance via breeding may provide longer-term benefits for water-limited environments but the challenge will be to identify a low-cost screening methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.