Internucleosomal DNA fragmentation is an apoptotic event that depends on the activity of different nucleases. Among them, the DNA fragmentation factor B, better known as caspase-activated DNase (CAD), is mainly responsible for this DNA fragmentation in dying cells. CAD is an endonuclease that is chaperoned and inhibited by inhibitor of CAD (ICAD). Activation of CAD needs the cleavage of ICAD by activated caspase-3. During the characterization of the staurosporineinduced apoptotic process in human neuroblastoma cell lines, we have found three novel splice variants of CAD. In all three messengers, the open reading frame is truncated after the second exon of the CAD gene. This truncated open reading frame codifies the CAD protein amino terminal part corresponding to the cell death-inducing DFF45-like effector-N (CIDE-N) domain. We have detected these splicing variants in human tissues and in peripheral white blood cells from 10 unrelated individuals, and their products have been showed to be expressed in certain mouse tissues. We demonstrate that these truncated forms of CAD are soluble proteins that interact with ICAD. We also provided evidences that these CIDE-N forms of CAD promote apoptosis in a caspase-dependent manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.