Cytokines are critical in the often fatal cascade of events that cause septic shock. One regulatory system that is likely to be important in controlling inflammatory responses is the neuroendocrine axis. The pituitary, for example, is ideally situated to integrate central and peripheral stimuli, and initiates the increase in systemic glucocorticoids that accompanies host stress responses. To assess further the contribution of the pituitary to systemic inflammatory processes, we examined the secretory profile of cultured pituitary cells and whole pituitaries in vivo after stimulation with bacterial lipopolysaccharide (LPS). Here we identify macrophage migration inhibitory factor (MIF) as a major secreted protein release by anterior pituitary cells in response to LPS stimulation. Serum analysis of control, hypophysectomized and T-cell-deficient (nude) mice suggests that pituitary-derived MIF contributes to circulating MIF present in the post-acute phase of endotoxaemia. Recombinant murine MIF greatly enhances lethality when co-injected with LPS and anti-MIF antibody confers full protection against lethal endotoxaemia. We conclude that MIF plays a central role in the toxic response to endotoxaemia and possibly septic shock.
Human macrophage migration inhibitory factor is a 114 amino acid protein that belongs to the family of immunologic cytokines. Assignments of 'H, I5N, and I3C resonances have enabled the determination of the secondary structure of the protein, which consists of two a-helices (residues 18-31 and 89-72) and a central four-stranded P-sheet. In the P-sheet, two parallel P-sheets are connected in an antiparallel sense. From the total of three cysteines present in the primary structure of MIF, none was found to form disulfide bridges. 'H-I5N heteronuclear T I , Tz, and steady-state NOE measurements indicate that the backbone of MIF exists in a rigid structure of limited conformational flexibility (on the nanosecond to picosecond time scale). Several residues located in the loop regions and at the N termini of two helices exhibit internal motions on the 1-3 ns time scale. The capacity to bind glutathione was investigated by titration of a uniform "N-labeled sample and led us to conclude that MIF has, at best, very low affinity for glutathione.
The subunit structure of human macrophage migration inhibitory factor (MIF) has been studied by preliminary X-ray analysis of wild-type and selenomethionine-MIF and dynamic light scattering. Crystal form I of MIF belongs to space group P2(1)2(1)2(1) and is grown from 2 M ammonium sulfate at pH 8.5. A native data set has been collected to 2.4 A resolution. Self-rotation studies and Van values indicate that three molecules per asymmetric unit are present. A data set to 2.8 A resolution has been collected for crystal form II, which belongs to space group P3(1)21 or P3(2)21 and grows from 2 M ammonium sulfate, 2% polyethylene glycol (average molecular mass 400) 0.1 M HEPES, pH 7.5. Three, four, five or six monomers in the asymmetric unit are consistent with Van values for this crystal form. Analysis of crystal form II containing selenomethionine-MIF indicates nine selenium sites are present per asymmetric unit. Dynamic light scattering of MIF suggests that the major form of the protein in solution is a trimer. The results of these studies are in contrast to previous reports indicating that MIF is a monomer or dimer. The subunit arrangement of MIF is similar to that of tumor necrosis factor and suggests that signal transduction might require trimerization of receptor subunits.
The protein mediator described originally as macrophage migration inhibitory factor (MIF) has been "re-discovered" recently to be both a novel pituitary hormone and a pro-inflammatory, macrophage-derived cytokine. Emerging studies indicate that MIF plays a pivotal role not only in endotoxic shock but also in the host response to a variety of acute and chronic infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.