The last decade has seen unprecedented effort in dark matter model building at all mass scales coupled with the design of numerous new detection strategies. Transformative advances in quantum technologies have led to a plethora of new high-precision quantum sensors and dark matter detection strategies for ultralight (< 10 eV) bosonic dark matter that can be described by an oscillating classical, largely coherent field. This white paper focuses on searches for wavelike scalar and vector dark matter candidates.
A light scalar field framework of dark energy, sometimes referred to as quintessence, introduces a fifth force between normal matter objects. Screening mechanisms, such as the chameleon model, allow the scalar field to be almost massless on cosmological scales while simultaneously evading laboratory constraints. We explore the ability of mechanical systems available in the near term to directly detect the fifth force associated with chameleon dark energy. We provide analytical expressions for the weakest accessible chameleon model parameters in terms of experimentally tunable variables and apply our analysis to two mechanical systems: levitated microspheres and torsion balances, showing that the current generation of these experiments have the sensitivity to rule out a significant portion of the proposed chameleon parameter space. We also indicate regions of theoretically well-motivated chameleon parameter space to guide future experimental work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.