Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4-1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0-2 weeks, 3-4 weeks and 5-6 weeks of the diagnosis (odds ratio (95%CI) 4.1 (3.3-4.8), 3.9 (2.6-5.1) and 3.6 (2.0-5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5 (0.9-2.1)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2-8.7) vs. 2.4% (95%CI 1.4-3.4) vs. 1.3% (95%CI 0.6-2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay.
SARS-CoV-2 has been associated with an increased rate of venous thromboembolism in critically ill patients. Since surgical patients are already at higher risk of venous thromboembolism than general populations, this study aimed to determine if patients with peri-operative or prior SARS-CoV-2 were at further increased risk of venous thromboembolism. We conducted a planned sub-study and analysis from an international, multicentre, prospective cohort study of elective and emergency patients undergoing surgery during October 2020. Patients from all surgical specialties were included. The primary outcome measure was venous thromboembolism (pulmonary embolism or deep vein thrombosis) within 30 days of surgery. SARS-CoV-2 diagnosis was defined as peri-operative (7 days before to 30 days after surgery); recent (1-6 weeks before surgery); previous (≥7 weeks before surgery); or none. Information on prophylaxis regimens or pre-operative anti-coagulation for baseline comorbidities was not available. Postoperative venous thromboembolism rate was 0.5% (666/123,591) in patients without SARS-CoV-2; 2.2% (50/2317) in patients with peri-operative SARS-CoV-2; 1.6% (15/953) in patients with recent SARS-CoV-2; and 1.0% (11/1148) in patients with previous SARS-CoV-2. After adjustment for confounding factors, patients with peri-operative (adjusted odds ratio 1.5 (95%CI 1.1-2.0)) and recent SARS-CoV-2 (1.9 (95%CI 1.2-3.3)) remained at higher risk of venous thromboembolism, with a borderline finding in previous SARS-CoV-2 (1.7 (95%CI 0.9-3.0)). Overall, venous thromboembolism was independently associated with 30-day mortality ). In patients with SARS-CoV-2, mortality without venous thromboembolism was 7.4% (319/4342) and with venous thromboembolism was 40.8% (31/76). Patients undergoing surgery with peri-operative or recent SARS-CoV-2 appear to be at increased risk of postoperative venous thromboembolism compared with patients with no history of SARS-CoV-2 infection. Optimal venous thromboembolism prophylaxis and treatment are unknown in this cohort of patients, and these data should be interpreted accordingly.
As a consequence, for type A category, a contralateral neck dissection might be avoidable accompanied by a reduction in surgical complications and operating time.
Tumorigenesis of oral squamous cell carcinoma (OSCC) has been postulated to represent a multistep process driven by the accumulation of carcinogen-induced genetic changes. Alterations of the 3p14 fragile site containing the fragile histidine triade gene and of the 9p21 tumor suppressor locus containing methylthioadenosine phosphorylase, p16 and p15 characteristically occur in oral leukoplakia, a known precursor of OSCC, and are at present considered to indicate the transition from simple keratosis (hyperplasia) to dysplasia. The aim of the study was to evaluate the occurrence of losses of 3p14 and 9p21 and to evaluate polysomies 3 and 9 in leukoplakias using highly sensitive fluorescence in situ hybridization (FISH) probes. Examining 67 leukoplakias (24 hyperplasias, 33 dysplasias, 10 in situ carcinomas), control tissues of oral mucosa from infants and adults as well as invasive carcinomas and normal epithelia of tumor patients with locus specific FISH probes targeting 3p14 and 9p21, and centromeric probes for chromosomes 3 and 9 we could demonstrate that losses of these sites appeared very early in the tumorigenesis of OSCC and were already present in the great majority of simple keratoses. Polysomy 3 occurring more frequently than polysomy 9 was characteristic of dysplasia and in situ carcinomas and thus seems to follow losses of 3p14 and 9p21 during oral squamous cell carcinogenesis. ' International Society for Analytical CytologyKey terms leukoplakia; fluorescence in situ hybridization; 3p14 fragile site; 9p21 tumor suppressor locus; FHIT; MTAP; p15; p16; polysomy ANNUALLY, over 700,000 new cases of oral squamous cell carcinoma (OSCC) occur worldwide (1). Several histologically distinct lesions of the oral mucosa have been identified to antecede OSCC with leukoplakia being the most frequent premalignancy (2). It is generally accepted that OSCC arises from a common premalignant progenitor followed by outgrowth of clonal populations associated with cumulative genetic alterations and phenotypic progression through a series of histological stages characterized by architectural disturbances (3): from simple keratosis (hyperplasia) to dysplasia of varying degrees (mild, moderate, severe/low grade and high grade squamous intraepithelial lesion (SIL)/squamous intraepithelial neoplasia (SIN) I, II, III) and carcinoma in situ (CIS) to invasive squamous cell carcinoma (4). This process is paralleled by inactivation of tumor suppressor genes and activation of protooncogenes by chromosomal imbalances, deletions, point mutations, gene promoter hypermethylation, and gene amplification resulting in alterations of cell signaling pathways (5-8). Microsatellite marker analysis has allowed the delineation of a genetic progression model for OSCC based on the frequency of these genetic
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.