Due to their outstanding properties, e.g., good contrast, wide viewing angle, low power consumption, and self-emission organic light-emitting (OLE) displays on the basis of conjugated polymers are on the verge of commercialization. Two major disadvantages of the current processing technique for the polymers—spin coating—are the material waste and the difficulties involved in patterning multichrome or even full-color displays. Therefore, we investigated the screen-printing technique for the production of OLE displays. In this letter, we present performance data and images of screen-printed OLE diodes. They are already comparable to spin-coated ones. We observed luminance of 10 000 cd/m2 at 8 V and peak efficiencies exceeding 10 cd/A for green diodes. These data indicate that printed organic displays have the potential to replace “classical” spin-coated devices.
We investigate electron injection and transport in single-layer devices of 8-hydroxyquinoline aluminum sandwiched between two electrodes. Electrodes comprising a thin lithium fluoride layer are compared with co-evaporated magnesium–silver cathodes and with pure aluminum cathodes. By employing both transient and quasistatic current measurements, the impact of the LiF-layer thickness on electron injection is investigated. It is demonstrated that contacts comprising 0.1–0.2 nm LiF and an aluminum capping layer are able to sustain space-charge-limited currents in 8-hydroxyquinoline aluminum. Further, steady-state current–voltage measurements as a function of temperature are discussed with respect to trap distributions in 8-hydroxyquinoline aluminum.
We investigate the impact of the deposition of low work function metals such as calcium on thin layers of fluorene-type polymers by time-of-flight secondary ion mass spectroscopy. An implantation process rather than a slow metal diffusion is found to be the most probable source of metal contamination within the polymer layers. This contamination extends to a range of several tens of nanometers in the organic layers. Photoluminescence and electroluminescence measurements are performed with varying calcium layer thicknesses. The luminescence efficiency exhibits a strong correlation with the depth profile of the calcium present within the polymer. The results are discussed with respect to the exciton diffusion length in the fluorene polymer. A numerical model including exciton formation, migration, and quenching is proposed in order to describe the observed phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.