This paper investigates the using potential of acryl-functionalized kraft lignin (AKL) in reducing the flammability of polymer composites based on recycled unsaturated polyester resins (UPR). Acryl functionalization of kraft lignin was performed by direct esterification of free polyphenolic groups with acryloyl chloride, after what, the AKL was blended in UPR resin synthesized from the polyols obtained by catalytic depolymerization of waste poly(ethylene terephthalate). The AKL was homogenized in UPR resin in different weight ratios: 2.5, 5.0, 7.5, and 12.5 wt.%. Structural and dynamic-mechanical characteristics of acryl-functionalized kraft lignin and composites were determined using FTIR spectroscopy, dynamicmechanical analysis (DMA), and tensile tests. The influence of functionalization and mass fraction of AKL on tensile and thermal properties of UPR resin was studied. The thermal properties of the composite were tested according to the standard UL-94 method, based on which the highest category of heat-resistant materials is a composite with 12.5 wt.% acylfunctionalized lignin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.