High-frequency burstlike electrical conditioning stimulation (HFS) applied to human skin induces an increase in mechanical pinprick sensitivity of the surrounding unconditioned skin (a phenomenon known as secondary hyperalgesia). The present study assessed the effect of frequency of conditioning stimulation on the development of this increased pinprick sensitivity in humans. In a first experiment, we compared the increase in pinprick sensitivity induced by HFS, using monophasic non-charge-compensated pulses and biphasic charge-compensated pulses. High-frequency stimulation, traditionally delivered with non-charge-compensated square-wave pulses, may induce a cumulative depolarization of primary afferents and/or changes in pH at the electrode-tissue interface due to the accumulation of a net residue charge after each pulse. Both could contribute to the development of the increased pinprick sensitivity in a frequency-dependent fashion. We found no significant difference in the increase in pinprick sensitivity between HFS delivered with charge-compensated and non-charge-compensated pulses, indicating that the possible contribution of charge accumulation when non-charge-compensated pulses are used is negligible. In a second experiment, we assessed the effect of different frequencies of conditioning stimulation (5, 20, 42, and 100 Hz) using charge-compensated pulses on the development of increased pinprick sensitivity. The maximal increase in pinprick sensitivity was observed at intermediate frequencies of stimulation (20 and 42 Hz). It is hypothesized that the stronger increase in pinprick sensitivity at intermediate frequencies may be related to the stronger release of substance P and/or neurokinin-1 receptor activation expressed at lamina I neurons after C-fiber stimulation. NEW & NOTEWORTHY Burstlike electrical conditioning stimulation applied to human skin induces an increase in pinprick sensitivity in the surrounding unconditioned skin (a phenomenon referred to as secondary hyperalgesia). Here we show that the development of the increase in pinprick sensitivity is dependent on the frequency of the burstlike electrical conditioning stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.