We consider the inverse sensitivity analysis problem of quantifying the uncertainty of inputs to a deterministic map given specified uncertainty in a linear functional of the output of the map. This is a version of the model calibration or parameter estimation problem for a deterministic map. We assume that the uncertainty in the quantity of interest is represented by a random variable with a given distribution, and we use the law of total probability to express the inverse problem for the corresponding probability measure on the input space. Assuming that the map from the input space to the quantity of interest is smooth, we solve the generally ill-posed inverse problem by using the implicit function theorem to derive a method for approximating the set-valued inverse that provides an approximate quotient space representation of the input space. We then derive an efficient computational approach to compute a measure theoretic approximation of the probability measure on the input space imparted by the approximate set-valued inverse that solves the inverse problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.