Objective To provide researchers an extensive characterization of the SPECTRUM variable nicotine research cigarettes. Methods Data on cigarette physical properties, nicotine content, harmful and potentially harmful constituents in the tobacco filler was compiled. Results Data on physical properties, concentrations of menthol, nicotine and minor alkaloids, tobacco-specific nitrosamines, polycyclic aromatic hydrocarbons, ammonia, and toxic metals in the filler tobacco for all available varieties of Spectrum research cigarettes are provided. The similarity in the chemistry and physical properties of SPECTRUM cigarettes to commercial cigarettes renders them acceptable for use in behavioral studies. Baseline information on harmful and potentially harmful constituents in research tobacco products, particularly constituent levels such as minor alkaloids that fall outside typical ranges reported for commercial, provide researchers with the opportunity to monitor smoking behavior and to identify biomarkers that will inform efforts to understand the role of nicotine in creating and sustaining addiction. Conclusions Well characterized research cigarettes suitable for human consumption are an important tool in clinical studies for investigating the physiological impacts of cigarettes delivering various levels of nicotine, the impact of reduced nicotine cigarettes on nicotine addiction, and the relationship between nicotine dose and smoking behavior.
Introduction Most electronic cigarettes (e-cigarettes) contain a solution of propylene glycol/glycerin and nicotine, as well as flavors. E-cigarettes and their associated e-liquids are available in numerous flavor varieties. A subset of the flavor varieties include coffee, tea, chocolate, and energy drink, which, in beverage form, are commonly recognized sources of caffeine. Recently, some manufacturers have begun marketing e-liquid products as energy enhancers that contain caffeine as an additive. Methods A Gas Chromatography-Mass Spectrometry (GC-MS) method for the quantitation of caffeine in e-liquids was developed, optimized and validated. The method was then applied to assess caffeine concentrations in 44 flavored e-liquids from cartridges, disposables, and refill solutions. Products chosen were flavors traditionally associated with caffeine (ie, coffee, tea, chocolate, and energy drink), marketed as energy boosters, or labeled as caffeine-containing by the manufacturer. Results Caffeine was detected in 42% of coffee-flavored products, 66% of tea-flavored products, and 50% of chocolate-flavored e-liquids (limit of detection [LOD] – 0.04 μg/g). Detectable caffeine concentrations ranged from 3.3 μg/g to 703 μg/g. Energy drink-flavored products did not contain detectable concentrations of caffeine. Eleven of 12 products marketed as energy enhancers contained caffeine, though in widely varying concentrations (31.7 μg/g to 9290 μg/g). Conclusions E-liquid flavors commonly associated with caffeine content like coffee, tea, chocolate, and energy drink often contained caffeine, but at concentrations significantly lower than their dietary counterparts. Estimated daily exposures from all e-cigarette products containing caffeine were much less than ingestion of traditional caffeinated beverages like coffee. Implications This study presents an optimized and validated method for the measurement of caffeine in e-liquids. The method is applicable to all e-liquid matrices and could potentially be used to ensure regulatory compliance for those geographic regions that forbid caffeine in e-cigarette products. The application of the method shows that caffeine concentrations and estimated total caffeine exposure from e-cigarette products is significantly lower than oral intake from beverages. However, because very little is known about the effects of caffeine inhalation, e-cigarette users should proceed with caution when using caffeine containing e-cigarette products. Further research is necessary to determine associated effects from inhaling caffeine.
Introduction Snus is an oral tobacco product that originated in Sweden. Snus products are available as fine-cut loose tobacco or in pre-portioned porous "pouches." Some snus products undergo tobacco pasteurization during manufacturing, a process that removes or reduces nitriteforming microbes, resulting in less tobacco-specific nitrosamine content in the product. Some tobacco companies and researchers have suggested that snus is potentially less harmful than traditional tobacco and thus a potential smoking cessation aid or an alternative to continued cigarette consumption. Although snus is available in various countries, limited information exists on snus variants from different manufacturers. Methods Moisture, pH, nicotine, and tobacco-specific N'-nitrosamines (TSNAs) were quantified in 64 snus products made by 10 manufacturers in the United States and Northern Europe (NE). Reported means, standard errors, and differences are least-square (LS) estimates from bootstrapped mixed effects models, which accounted for correlation among repeated measurements. Minor alkaloids and select flavors were also measured. Results Among all product types, moisture (27.4%-59.5%), pH (pH 5.87-9.10), total nicotine (6.81-20.6 mg/g, wet), unprotonated nicotine (0.083-15.7 mg/g), and total TSNAs (390-4,910 ng/ g) varied widely. The LS-mean unprotonated nicotine concentration of NE portion (7.72 mg/ g, SE = 0.963) and NE loose (5.06 mg/g, SE = 1.26) snus were each significantly higher than US portion snus (1.00 mg/g, SE = 1.56). Concentrations of minor alkaloids varied most among products with the highest total nicotine levels. The LS-mean NNN+NNK were higher in snus sold in the US (1360 ng/g, SE = 207) than in NE (836 ng/g, SE = 132) countries. The most abundant flavor compounds detected were pulegone, eucalyptol, and menthol.
A non-destructive method to determine the percent composition and relative purity of bulk solid phase mixed fullerene samples using Raman spectroscopy is described. This ratiometric method has a significant advantage in ease of use over other methods, in that the samples are analyzed in a short time, as solids in suspension, with minimal sample pre-preparation, using easy to operate instrumentation. The ratio of unique vibrational bands vs. percent composition is used to construct a calibration curve, and a detection limit estimated in the presence of chemical noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.