The generation of reactive oxygen species (ROS) has been implicated in the regulation of sperm capacitation and acrosome reaction; however, the mechanisms underlying this regulation remain unclear. To examine the cellular processes involved, we studied the effect of different concentrations of hydrogen peroxide (H(2)O(2)) on protein tyrosine phosphorylation under various conditions. Treatment of spermatozoa with H(2)O(2) in medium without heparin caused a time- and dose-dependent increase in protein tyrosine phosphorylation of at least six proteins in which maximal effect was seen after 2 h of incubation with 50 microM H(2)O(2). At much higher concentrations of H(2)O(2) (0.5 mM), there is significant reduction in the phosphorylation level, and no protein tyrosine phosphorylation is observed at 5 mM H(2)O(2) after 4 h of incubation. Exogenous NADPH enhanced protein tyrosine phosphorylation similarly to H(2)O(2). These two agents, but not heparin, induced Ca(2+)-dependent tyrosine phosphorylation of an 80-kDa protein. Treatment with H(2)O(2) (50 microM) caused approximately a twofold increase in cAMP, which is comparable to the effect of bicarbonate, a known activator of soluble adenylyl cyclase in sperm. This report suggests that relatively low concentrations of H(2)O(2) are beneficial for sperm capacitation, but that too high a concentration inhibits this process. We also conclude that H(2)O(2) activates adenylyl cyclase to produce cAMP, leading to protein kinase A-dependent protein tyrosine phosphorylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.