-Among the species in the family Salmonidae, those represented by the genera Salmo, Salvelinus, and Oncorhynchus (subfamily Salmoninae) are the most studied. Here, various aspects of phenotypic and life-history variation of Atlantic salmon Salmo salar L., brown trout Salmo trutta L., and Arctic charr Salvelinus alpinus (L.) are reviewed. While many strategies and tactics are commonly used by these species, there are also differences in their ecology and population dynamics that result in a variety of interesting and diverse topics that are challenging for future research. Atlantic salmon display considerable phenotypic plasticity and variability in life-history characters ranging from fully freshwater resident forms, where females can mature at approximately 10 cm in length, to anadromous populations characterised by 3-5 sea-winter (5SW) salmon. Even within simple 1SW populations, 20 or more spawning life-history types can be identified. Juveniles in freshwater can use both fluvial and lacustrine habitats for rearing, and while most smolts migrate to sea during the spring, fall migrations occur in some populations. At sea, some salmon undertake extensive oceanic migrations while other populations stay within the geographical confines of areas such as the Baltic Sea. At the other extreme are those that reside in estuaries and return to freshwater to spawn after spending only a few months at sea. The review of information on the diversity of life-history forms is related to conservation aspects associated with Atlantic salmon populations and current trends in abundance and survival. Brown trout is indigenous to Europe, North Africa and western Asia, but was introduced into at least 24 countries outside Europe and now has a world-wide distribution. It exploits both fresh and salt waters for feeding and spawning (brackish), and populations are often partially migratory. One part of the population leaves and feeds elsewhere, while another part stays as residents. In large, complex systems, the species is polymorphic with different size morphs in the various parts of the habitat. Brown trout feed close to the surface and near shore, but large individuals may move far offshore. The species exhibits ontogenetic niche shifts partly related to size and partly to developmental rate. They switch when the amount of surplus energy available for growth becomes small with fast growers being younger and smaller fish than slow growers. Brown trout is an opportunistic carnivore, but individuals specialise at least temporarily on particular food items; insect larvae are important for the young in 1 Un resumen en espan˜ol se incluye detra´s del texto principal de este artı´culo. Introduction''There is no group or family of fishes that supplies better materials for the study of the effects of geographic or physiologic isolation, or which presents more curious and interesting facts in their life histories than do the various species of Salmonidae.'' (Evermann 1925) The salmonid subfamily Salmoninae comprises about 30 species ...
Projected shifts in climate forcing variables such as temperature and precipitation are of great relevance to arctic freshwater ecosystems and biota. These will result in many direct and indirect effects upon the ecosystems and fish present therein. Shifts projected for fish populations will range from positive to negative in overall effect, differ among species and also among populations within species depending upon their biology and tolerances, and will be integrated by the fish within their local aquascapes. This results in a wide range of future possibilities for arctic freshwater and diadromous fishes. Owing to a dearth of basic knowledge regarding fish biology and habitat interactions in the north, complicated by scaling issues and uncertainty in future climate projections, only qualitative scenarios can be developed in most cases. This limits preparedness to meet challenges of climate change in the Arctic with respect to fish and fisheries.
The effects of formalin and ethanol preservation on the d 13 C and d 15 N isotope signatures of Arctic charr Salvelinus alpinus muscle tissue were examined. The lipid content of the tissue samples studied ranged from 3Á6 to 6Á1% and was not correlated with the magnitude of observed isotopic shifts in preserved samples. Ethanol and formalin significantly depleted and enriched, respectively, the d 13 C isotope signatures of preserved tissues when compared to control samples. Ethanol did not significantly enrich d 15 N signatures in comparison to controls, whereas formalin did. A meta-analysis of multiple species effects further demonstrated significant preservation effects in fish tissue. Statistical analysis of data obtained by correcting preserved tissue isotope signatures with literature, bootstrapped or meta-analysis derived correction factors demonstrated significant differences between corrected and control sample isotope signatures or failure to produce a unity slope when the data sets were regressed against one another. Species-specific, bootstrapped linear correction models resulted in no such errors. Results suggest that speciesspecific correction methods should be used for fishes because of the known wide variation in fish tissue lipid content and composition. Accordingly, the use of pilot studies will be required to develop correction factors that properly adjust for preservation effects when interpreting temporal patterns in historic analyses of food webs.
Arctic freshwater and diadromous fish species will respond to the various effects of climate change in many ways. For wide-ranging species, many of which are key components of northern aquatic ecosystems and fisheries, there is a large range of possible responses due to inter- and intra-specific variation, differences in the effects of climate drivers within ACIA regions, and differences in drivers among regions. All this diversity, coupled with limited understanding of fish responses to climate parameters generally, permits enumeration only of a range of possible responses which are developed here for selected important fishes. Accordingly, in-depth examination is required of possible effects within species within ACIA regions, as well as comparative studies across regions. Two particularly important species (Arctic char and Atlantic salmon) are examined as case studies to provide background for such studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.