Elastic electron-proton scattering (e−p) and the spectroscopy of hydrogen atoms are the two traditional methods used to determine the proton charge radius (r p). About a decade ago, a new method using muonic hydrogen (µH) atoms 1 found a significant discrepancy with the compilation of all previous results 2 , creating the "proton radius puzzle". Despite intensive worldwide experimental and theoretical efforts, the "puzzle" remains unresolved. In fact, a new discrepancy was reported between the two most recent spectroscopic measurements on ordinary hydrogen 3, 4. Here, we report on the PRad experiment, the first high-precision e − p experiment since the emergence of the "puzzle". For the first time, a magnetic-spectrometerfree method was employed along with a windowless hydrogen gas target, which overcame several limitations of previous e − p experiments and reached unprecedented small angles.
A frozen spin polarized target, constructed at Jefferson Lab for use inside a large acceptance spectrometer, is described. The target has been utilized for photoproduction measurements with polarized tagged photons of both longitudinal and circular polarization. Protons in TEMPO-doped butanol were dynamically polarized to approximately 90% outside the spectrometer at 5 T and 200-300 mK. Photoproduction data were acquired with the target inside the spectrometer at a frozen-spin temperature of approximately 30 mK with the polarization maintained by a thin, superconducting coil installed inside the target cryostat. A 0.56 T solenoid was used for longitudinal target polarization and a 0.50 T dipole for transverse polarization. Spin-lattice relaxation times as high as 4000 hours were observed. We also report polarization results for deuterated propanediol doped with the trityl radical OX063.
Single-beam, single-target, and double spin asymmetries for hard exclusive electroproduction of a photon on the proton (e) over right arrow(p) over right arrow. e'p'gamma are presented. The data were taken at Jefferson Lab using the CEBAF large acceptance spectrometer and a longitudinally polarized (NH3)-N-14 target. The three asymmetries were measured in 165 four-dimensional kinematic bins, covering the widest kinematic range ever explored simultaneously for beam and target-polarization observables in the valence quark region. The kinematic dependences of the obtained asymmetries are discussed and compared to the predictions of models of generalized parton distributions. The measurement of three DVCS spin observables at the same kinematic points allows a quasi-model-independent extraction of the imaginary parts of the H and (H) over tilde Compton form factors, which give insight into the electric and axial charge distributions of valence quarks in the proton
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.