Nanodiamonds exhibit exceptional
colloidal properties in aqueous
media that lead to a wide range of applications in nanomedicine and
other fields. Nevertheless, the role of surface chemistry on the hydration
of nanodiamonds remains poorly understood. Here, we probed the water
hydrogen bond network in aqueous dispersions of nanodiamonds by infrared,
Raman, and X-ray absorption spectroscopies applied in situ in aqueous
environment. Aqueous dispersions of nanodiamonds with hydrogenated,
carboxylated, hydroxylated, and polyfunctional surface terminations
were compared. A different hydrogen bond network was found in hydrogenated
nanodiamonds dispersions compared to dispersions of nanodiamonds with
other surface terminations. Although no hydrogen bonds are formed
between water and hydrogenated surface groups, a long-range disruption
of the water hydrogen bond network is evidenced in hydrogenated nanodiamonds
dispersion. We propose that this unusual hydration structure results
from electron accumulation at the diamond–water interface.
We have improved the diamond nanoparticle seeding approach for chemical vapor deposition diamond growth in a novel process that consists of embedding the nanoparticles into a polymer matrix. We used a thin film of polyvinyl alcohol (PVA) doped with nanoparticles, which burns away during the initial stages of growth, leaving a stable distribution of nanoparticles on the substrate to initiate growth. The study shows that by varying the initial concentration of nanoparticles in the polymer preparation, it is possible to control the density of nanoparticles on the surface, over a wide range of densities. In some experimental conditions, the high densities of diamond seeding values obtained compare well with the highest values reported by the state-of-the-art. Moreover, the technique also opens up the route to very large area seeding, and this onto most types of substrates. In situ x-ray photoelectron spectroscopy (XPS) analyses showed that after pyrolysis of the polymer under H2 plasma, no significant residual carbon from the polymer was observed. Also, in the case of growth on silicon substrates, no silicon carbide was observed at the surface, showing that no reaction takes place between the polymer and the silicon surface itself. Finally, XPS also demonstrated that the polymer has not modified significantly the surface of the diamond nanoparticles after its pyrolysis. This approach improves the reproducibility of diamond nanoparticle seeding on flat surfaces and is more versatile as it may be applied to complex three-dimensional structures or cavities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.