Moisture is detrimental to the performance of epoxy resin material for electrical equipment in long-term operation and insulation. Therefore, moisture absorption is one of the critical indicators for insulation of the material. However, some relevant test methods, e.g., the direct weighing method, are time-consuming, and it usually takes months to complete a test. For this, it is necessary to have some modification to save the test time. Firstly, the study analyzes the present prediction method (according to ISO 62:2008). Under the same accuracy, the time required is reduced from 104 days to 71 days. Subsequently, the Langmuir curve-fitting method for water absorption of epoxy resin is analyzed, and the initial values of diffusion coefficient, bonding coefficient, and de-bonding coefficient are determined based on the results of molecular simulation, relevant experiment, and literature review. With the optimized prediction model, it takes only 1.5 days (reduced by 98% as compared with the standard prediction method) to determine the moisture absorbability. Then, the factors influencing the prediction accuracy are discussed. The results have shown that the fluctuation of balance at the initial stage will affect the test precision significantly. Accordingly, this study proposes a quantitative characterization method for initial trace moisture based on the terahertz method, by which the trace moisture in epoxy resin is represented precisely through the established terahertz time-domain spectroscopy system. When this method is used to predict the moisture absorbability, the experimental time may be further shortened by 33% to 1 day. For the whole water absorption cycle curve, the error is less than 5%.
The ultrasonic transmission properties of sodalime glass at elevated temperatures were measured in the frequency range 0.25 to 1.0 mc. Single-crystal sapphire rods were used as transmission lines between the sample and barium titanate transducers. A small but uniform increase in absorption of energy was noted up to 800'F. From 800' to 15OO0F. there was a great increase in absorption of energy. At 1500' the energy passing through 1 cm. of sodalime glass was of the incident energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.