This study devoted to the FT-IR spectroscopy of monolayers spread at the air/water interface is, to our knowledge, the first report presenting complete mid-infrared monolayer spectra perfectly extracted from the strong water vapor bands. This has been possible with the use of the polarization-modulated IRRAS method, which is not sensitive to the isotropic absorptions of the sample environment. On the basis of theoretical modeling and experiments, the best angle of incidence has been found near 76° for detection of intraplane as well as out-of-plane oriented monolayer absorptions. With the use of such experimental conditions, on the normalized difference (covered vs. uncovered water) PM-IRRAS spectra, monolayer vibrational bands come out upward or downward, depending on the orientation of their transition moment with respect to the interface. Application to the study of deuterated arachidic acid and arachidate monolayers allows observation of the vibrational modes of the polar head groups interacting with the liquid water molecules and provides some evidence of their symmetrical anchoring. The vibrational modes of the liquid water subphase contribute to these difference spectra as broad dips that certainly contain information on a possible restructuring of the water molecules at the interface.
Articles you may be interested inHydrogen-bonded acetic acid dimers: Anharmonic coupling and linear infrared spectra studied with density-functional theory
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.