An important characteristic of mobile manipulators is their particular kinematic redundancy created by the addition of the degrees of freedom of the platform and those of the manipulator. This kinematic redundancy is very desirable since it allows mobile manipulators to operate under many modes of motion and to perform a wide variety of tasks. On the other hand, it also significantly complicates the problem of planning a series of sequential tasks, in particular for the critical times at which the system needs to "switch" from one task to the other (task commutation), with changes in mode of motion, task requirement, and task constraints. This paper focuses on the problem of planning the positions and configurations in which the system needs to be at task commutation in order to assure that it can properly initiate the next task to be performed. The concept of and need for "commutation configurations" in sequences of mobile manipulator tasks is introduced, and an optimization approach is proposed for their calculation during the task sequence planning phase. A variety of optimization criteria were previously investigated to optimize the task commutation configurations of the system when task requirements involve obstacle avoidance, reach, maneuverability, and optimization of strength. In this paper, we show that a "minimax" approach is particularly adapted for most of these requirements. We develop the corresponding criteria and discuss solution algorithms to solve the "minimax" optimization problems. An implementation of the algorithms for our HERMIES-I11 mobile manipulator is then described and sample results are presented and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.