The electrocoagulation of kaolinite and bentonite suspensions was studied in a pilot electrocoagulation system at the Western Research Center of CANMET to assess the operating cost and efficiency of the process. Factors affecting the operating cost such as, the formation of passivation layers on electrode plates, flow velocity and concentration of sodium chloride in the suspension were examined. The operating costs investigated in this paper were the power cost of the electrocoagulation cell and the material cost due to the consumption of the aluminum electrode. Comparison was based on the settling properties of the treated product: turbidity, settling rate, and cake height. Higher concentration of sodium chloride resulted in greater amount of aluminum dissolved chemically and electrochemically into the suspension and thus a better clarity of the supernatant of the treated product. Increased flow velocity could reduce significantly the operating cost while improving both clarity of the supernatant and the compactness of the sludge volume. The passivation layers developed quickly with time during the electrocoagulation process and more energy became wasted on the layers.
The detoxification of hydrogen sulfide (H2S) by a heme catalyzed oxidation was examined as part of an on-going study of H2S toxicity. Interlocking O2 absorption and sulfide depletion data indicate that both oxyhemoglobin and methemoglobin are effective catalytic agents. Although the latter is more efficacious, the life time of excess sulfide in the presence of oxygen and either of the above is of the order of minutes. It has also been established that the formation of methemoglobin following nitrite administration occurs preferentially under oxygen poor conditions. Under an atmospheric or oxygen enriched environment, which favors sulfide depletion, the nitrite retards sulfide oxidation. Thus nitrite as an antidote for acute H2S intoxication can only be effective within the first few minutes after the exposure, at which time resuscitation and/or ventilation of the victim is likely to produce conditions in which the nitrite actually slows sulfide removal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.