The primary objective of this work was to generate species-specific information about root architectural responses to variations in inorganic phosphate (Pi) availability at the onset of storage root formation among six sweetpotato (Ipomoea batatas) cultivars. Three Pi levels were used: 0 (low Pi); 0.17 (medium Pi); and 0.34 (high Pi) g/pot triple super phosphate (0N–46P–0K). The check cultivar ‘Bayou Belle’ (BB) consistently showed evidence of storage root formation at 15 days in adventitious roots (ARs) grown across three Pi levels and two planting dates (PDs). Storage root formation was also detected in ‘Orleans’ (OR) and ‘Beauregard’ (BX), but it was less consistent relative to BB. In general, BB had the lowest adventitious root (AR) number relative to the other cultivars, but the magnitudes of difference varied with Pi availability and PD. With the first PD, BX had a 45% higher AR number compared with BB in low Pi conditions; however, there were no differences in the second PD. Within cultivars, BX and Okinawa grown in low Pi showed combined 17% and 24% reductions in primary root length (PRL) relative to roots grown in high Pi. BB had a higher lateral root number (LRN) and lateral root density (LRD) across Pi levels, corroborating prior data regarding the association of these root architectural attributes with the onset of storage root formation. The experimental data support the hypothesis regarding the existence of genetic variation for Pi efficiency in sweetpotato and that some well-documented Pi-efficient root traits like high LRN and LRD are indirectly selected for in-breeding programs that focus on early storage root formation and stable yields across environments.
The primary objective of this work was to generate species-specific information about root architectural adaptation to variation in boron (B) availability at the onset of storage root formation among three sweetpotato [Ipomoea batatas (L.) Lam] cultivars (Beauregard = BX; Murasaki = MU; Okinawa = OK). Three B levels were used: 0B (B was omitted in the nutrient solution, substrate B = 0.1 mg·kg−1), 1XB (sufficient B; 0.5 mg·kg−1), and 2XB (high B; 1 mg·kg−1). The check cultivar BX showed evidence of storage root formation at 15 days in 0B and 1XB, whereas cultivars MU and OK failed to show evidence of root swelling. The 1XB and 2XB levels were associated with 736% and 2269% increase in leaf tissue B in BX, respectively, relative to plants grown in 0B. Similar magnitudes of increase were observed in MU and OK cultivars. There were no differences in adventitious root (AR) count within cultivars but OK showed 25% fewer AR numbers relative to BX across all B levels. 0B was associated with 20% and 48% reduction in main root length in BX and OK, respectively, relative to plants grown in 1XB and 2XB. 2XB was associated with a 10% increase in main root length in MU relative to plants grown in 0B and 1XB. 0B was associated with reduced lateral root length in all cultivars but the magnitude of responses varied with cultivars. These data corroborate findings in model systems and well-studied crop species that B deficiency is associated with reduced root growth. These data can be used to further understand the role of cultivar-specific responses to variation in B availability in sweetpotato.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.