We have constructed an optical clock with a fractional frequency inaccuracy of 8.6x10{-18}, based on quantum logic spectroscopy of an Al+ ion. A simultaneously trapped Mg+ ion serves to sympathetically laser cool the Al+ ion and detect its quantum state. The frequency of the {1}S{0}<-->{3}P{0} clock transition is compared to that of a previously constructed Al+ optical clock with a statistical measurement uncertainty of 7.0x10{-18}. The two clocks exhibit a relative stability of 2.8x10{-15}tau{-1/2}, and a fractional frequency difference of -1.8x10{-17}, consistent with the accuracy limit of the older clock.
By measurement of the frequency of a vibrational overtone transition in the molecular hydrogen ion HD , we demonstrate the first optical spectroscopy of trapped molecular ions with submegahertz accuracy. We use a diode laser, locked to a stable frequency comb, to perform resonance-enhanced multiphoton dissociation spectroscopy on sympathetically cooled HD ions at 50 mK. The achieved 2-ppb relative accuracy is a factor of 150 higher than previous results for HD , and the measured transition frequency agrees well with recent high-accuracy ab initio calculations, which include highorder quantum electrodynamic effects. We also show that our method bears potential for achieving considerably higher accuracy and may, if combined with slightly improved theoretical calculations, lead to a new and improved determination of the electron-proton mass ratio.
The transition wave number from the EF 1 ⌺ g + ͑v =0,N =1͒ energy level of ortho-H 2 to the 54p1 1 ͑0͒ Rydberg state below the X + 2 ⌺ g + ͑v + =0,N + =1͒ ground state of ortho-H 2 + has been measured to be 25 209.997 56Ϯ ͑0.000 22͒ statistical Ϯ ͑0.000 07͒ systematic cm −1 . Combining this result with previous experimental and theoretical results for other energy level intervals, the ionization and dissociation energies of the hydrogen molecule have been determined to be 124 417.491 13͑37͒ and 36 118.069 62͑37͒ cm −1 , respectively, which represents a precision improvement over previous experimental and theoretical results by more than one order of magnitude. The new value of the ionization energy can be regarded as the most precise and accurate experimental result of this quantity, whereas the dissociation energy is a hybrid experimental-theoretical determination.
We report, for the first time, laser spectroscopy of the 1S0-->3P0 clock transition in 27Al+. A single aluminum ion and a single beryllium ion are simultaneously confined in a linear Paul trap, coupled by their mutual Coulomb repulsion. This coupling allows the beryllium ion to sympathetically cool the aluminum ion and also enables transfer of the aluminum's electronic state to the beryllium's hyperfine state, which can be measured with high fidelity. These techniques are applied to measure the clock transition frequency nu=1,121,015,393,207,851(6) Hz. They are also used to measure the lifetime of the metastable clock state tau=20.6+/-1.4 s, the ground state 1S0 g factor gS=-0.000,792,48(14), and the excited state 3P0 g factor gP=-0.001,976,86(21), in units of the Bohr magneton.
Highly accurate results from frequency measurements on neutral hydrogen molecules H2, HD and D2 as well as the HD + ion can be interpreted in terms of constraints on possible fifth-force interactions. Where the hydrogen atom is a probe for yet unknown lepton-hadron interactions, and the helium atom is sensitive for lepton-lepton interactions, molecules open the domain to search for additional long-range hadron-hadron forces. First principles calculations in the framework of quantum electrodynamics have now advanced to the level that hydrogen molecules and hydrogen molecular ions have become calculable systems, making them a search-ground for fifth forces. Following a phenomenological treatment of unknown hadron-hadron interactions written in terms of a Yukawa potential of the form V5(r) = β exp(−r/λ)/r current precision measurements on hydrogenic molecules yield a constraint β < 1 × 10 −7 eV·Å for long-range hadron-hadron interactions at typical force ranges commensurate with separations of a chemical bond, i.e. λ ≈ 1Å and beyond.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.