Up to 8 microg/kg of rhuIL-10 was well tolerated. A tendency toward clinical improvement but not remission was observed in the 8-microg/kg dose group. Further studies should delineate which subgroups of patients with CD benefit from rhuIL-10 therapy.
Background: Interleukin 10 (IL-10) exerts anti-inflammatory actions by counteracting many biological effects of interferon γ (IFN-γ). Aims: To investigate this in humans, we studied the effects of human recombinant IL-10 administration on IFN-γ production by patient leucocytes. Furthermore, we assessed the IFN-γ inducible molecule neopterin and nitrite/nitrate serum levels, which are indicative of endogenous nitric oxide formation. Methods: As part of two placebo controlled double blind studies, we analysed patients with chronic active Crohn's disease (CACD) who received either subcutaneous recombinant human IL-10 (n=44) or placebo (n=10) daily for 28 days, and patients with mild to moderate Crohn's disease (MCD) treated with either subcutaneous IL-10 (n=52) or placebo (n=16) daily for 28 days. Neopterin and nitrite/nitrate concentrations were measured in serum, and ex vivo IFN-γ formation by lipopolysaccharide or phytohaemagglutinin (PHA) stimulated whole blood cells were investigated before, during, and after IL-10 therapy. Results: In patients with CACD, the highest dose of 20 µg/kg IL-10 caused a significant increase in serum neopterin on days +15 and +29 of therapy compared with pretreatment levels. No changes were observed for nitrite/nitrate levels under either condition. In MCD, treatment with 20 µg/kg IL-10 resulted in a significant increase in PHA induced IFN-γ production. Conclusions: High doses of IL-10 upregulate the production of IFN-γ and neopterin. This phenomenon may be responsible for the lack of efficacy of high doses of IL-10 in the treatment of CACD and MCD.
Both anaemia of iron deficiency and anaemia of chronic disease are frequently encountered in inflammatory bowel disease. Anaemia of iron deficiency is mostly due to inadequate intake or loss of iron. Anaemia of chronic disease probably results from decreased erythropoiesis, secondary to increased levels of proinflammatory cytokines, reactive oxygen metabolites and nitric oxide. Assessment of the iron status in a condition associated with inflammation, such as inflammatory bowel disease, is difficult. The combination of serum transferrin receptor with ferritin concentrations, however, allows a reliable assessment of the iron deficit. The best treatment for anaemia of chronic disease is the cure of the underlying disease. Erythropoietin reportedly may increase haemoglobin levels in some of these patients. The anaemia of iron deficiency is usually treated with oral iron supplements. Iron supplementation may lead to an increased inflammatory activity through the generation of reactive oxygen species. To date, data from studies in animal models of inflammatory bowel disease support the theoretical disadvantage of iron supplementation in this respect. The results, however, cannot easily be extrapolated to the human situation, because the amount of supplemented iron in these experiments was much higher than the dose used in patients with iron deficiency.
A single-chain Fv antibody fragment specific for the tumor-associated Ep-CAM molecule was isolated from a semisynthetic phage display library and converted into an intact, fully human IgG1 monoclonal antibody (huMab). The purified huMab had an affinity of 5 nM and effectively mediated tumor cell killing in in vitro and in vivo assays. These experiments show that nonimmunized phage antibody display libraries can be used to obtain high-affinity, functional, and clinically applicable huMabs directed against a tumor-associated antigen.
We have studied the iron metabolism in nine patients with erythropoietic protoporphyria (EPP) and three patients with sideroblastic anaemia (SA). All, except one EPP patient were iron deficient. The SA patients had a secondary haemochromatosis. The bone marrow aspirates of patients with SA and also three patients with EPP had a high incidence of ring sideroblasts. Ultrastructural examination of the bone marrow consistently showed finely dispersed electron-dense deposits localized in mitochondria of erythroblasts in all patients with EPP and SA. Mitochondrial electron energy-loss spectroscopy (EELS) indicated identical iron compounds in erythroblasts of all EPP and SA patients. These findings indicate that the mitochondrial iron utilization is disturbed in EPP and SA. The observation of mitochondrial iron deposition in erythroblasts in EPP and SA suggests that this failure is not of pathognomonic value for diagnosis of SA, but is apparently the result of an inefficient haem synthesis, in EPP due to a defective ferrochelatase. The mitochondrial iron deposition does not depend on the iron status (iron overload or iron deficiency) of the EPP patient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.