We have studied the effect of excess charge on the bond strength in the silanes SiH4 and Si2H6 to assess whether charge trapping in a solid-state lattice might promote the technologically important photodegradation of amorphous silicon alloys (the Staebler-Wronski effect). The calculations indicate that both positive and negative charges reduce the strength of Si-H and Si-Si bonds considerably, to the point where they may be broken easily by visible or even infrared light.
Silicon nanowires with high aspect ratios have been grown at high density using a variation of Plasma Enhanced Chemical Deposition (PECVD) known as Pulsed PECVD (PPECVD). Growth rate and morphology were investigated for a range of catalysts: gold, silver, aluminum, copper, indium and tin. The thickness of the catalyst layer was 100nm. Deposition was carried out in a parallel plate PECVD chamber at substrate temperatures up to 350°C, from undiluted semiconductor grade Silane. A 1 kHz square wave was used to modulate the 13.56 MHz RF power. Samples were analyzed using either a Phillips XL20 SEM or a ZEISS 1555 VP FESEM. The average diameter for nanowires grown using a gold catalyst layer was 150nm and the average length was 4µm although some nanowires were observed with lengths up to 20µm. Back-scattered-electron images clearly show gold present at the tips of the silicon nanowires grown using gold as a catalyst, confirming their growth by the vapor liquid solid (VLS) mechanism. Sporadic growth of nanowires was detected when using copper as a catalyst. Although gold performed best as catalyst for nanowire growth it was, however, closely followed by tin. The other catalysts produced nanowires with properties between these extremes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.