In this work, we report on a closed-form formulation for the build-up factor and absorbed energy, in one and two di- mensional Cartesian geometry for photons and electrons, in the Compton energy range. For the one-dimensional case we use the LTSN method, assuming the Klein-Nishina scattering kernel for the determination of the angular radiation intensity for photons. We apply the two-dimensional LTSN nodal solution for the averaged angular radiation evaluation for the two-dimensional case, using the Klein-Nishina kernel for photons and the Compton kernel for electrons. From the angular radiation intensity we construct a closed-form solution for the build-up factor and evaluate the absorbed energy. We present numerical simulations and comparisons against results from the literature
We consider the time dependent neutron diffusion equation for one energy group in cylinder coordinates, assuming translational symmetry along the cylinder axis. This problem for a specific energy group is solved analytically applying the Hankel transform in the radial coordinater. Our special interest rests in the build-up factor for a time dependent linear neutron source aligned with the cylinder axis, which in the limit of zero decay constant reproduces also the static case. The new approach to solve the diffusion equation by integral transform technique is presented and results for several parameter sets and truncation in the solution for the flux and build-up factor are shown and found to be compatible to those of literature [1,2].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.