Velocity measurements in a 51 mm diameter turbulent jet are presented. The measurement programme is conducted in two parts. The first part is devoted to the validation of laser velocimeter (LV) data. This consists of comparative measurements with the LV and a hot-wire anemometer. The second part consists of a survey of the jet flow field at Mach 0·28, 0·90, and 1·37 under ambient temperature conditions. Radial and centre-line distributions of the axial and radial, mean and fluctuating velocities are obtained. The distributions indicate a decrease in the spreading rate of the mixing layer with increasing Mach number and a corresponding lengthening of the potential core. The results further indicate that these two parameters vary with the square of the jet Mach number. Radial distributions collapse when plotted in terms of ση*, where σ = 10.7/(1 - 0.273 MJ2) and η* = (r − r0·5)/x. This is true for distributions in planes located as far downstream as two potential core lengths. The collapsed data of mean velocity can be approximated by a Görtler error function profile: \[ U/U_J = 0.5[1-{\rm erf}(\sigma\eta^{*})]. \] Centre-line distributions at various Mach numbers also collapse if plotted in terms of x/xc, xc being the potential core length. A general equation for the collapsed data of mean velocity is given by: U/UJ = 1 - exp{1.35/(1 - x/xc)}, for the range of Mach numbers 0·3-1·4, where xc = 4.2 + 1.1 MJ2.
This paper describes mean-flow and turbulence measurements conducted in a round jet over a range of Mach numbers from 0·3 to 1·7 and jet-exit static temperatures from −40 to over 400 °C. It is a continuation of an earlier work, reported by Lau, Morris & Fisher (1979), to try to map the distribution of the various flow characteristics in the jet flow field and to observe the effects of changing jet exit conditions. In the earlier study, the effort was confined to isothermal jets at a limited number of exit Mach numbers, and the laser velocimeter proved to be a particularly useful instrument, especially in situations where the more severe flow conditions made it impossible to extract fluctuating-velocity data by any other means. The present effort capitalizes on this aspect of the velocimeter and also its ability to measure mean velocities accurately; and the extended range and detail of jet conditions chosen for this study is intended to provide a clearer understanding of the effects of systematically changing the jet conditions. Corresponding Pitot and total temperature measurements are also carried out under a representative set of jet conditions specifically to try to shed light on the effect of jet heating. Based on the various axial and radial distributions which are obtained, a picture is constructed of the changing boundaries of the shear layer with changing jet conditions.
It was suggested by Lau, Fisher & Puchs (1972) that the basic structure of a ‘turbulent’ round jet might consist, essentially, of an axial array of fairly evenly spaced vortices moving downstream in the mixing region of the jet. The present experimental study is an attempt to establish this hypothesis on a sound footing. The problem which was posed was first to find proof of the existence of a fairly regular pattern in the mixing region, and second to extract detailed information on the component parts of this pattern to identify the nature of the structure.Hot-wire signals in the mixing layer are known to possess a predominance of spikes. In the region closer to the high velocity side of the layer, these spikes tend to be downward ones whilst in the opposite region, they are upward. These spikes have been attributed to the entrainment mechanism in the mixing layer and had been thought to be random. A closer study of time-history curves of these hotwire signals suggests that they might not be as random as would appear at first glance. A probability analysis was conducted of the time intervals between the successive downward spikes in the u′ signals, and it was found that indeed the highest probability occurred when the time interval corresponded to a frequency equal to the vortex passing frequency.A time-domain averaging (or eduction) technique was used to try to identify the nature of the flow structure using the spikes to trigger the eduction process. On the basis of these results it would seem that the suggestion of a vortex street is well founded. Furthermore, it appears that, as the individual vortices in the street move downstream, they are continuously transporting fluid masses across the mixing layer, and it is this effect which is producing the Reynolds stresses in the mixing layer, and causing the spikes in the u’ signals in this region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.