To isolate specific markers of both differentiated and proliferating vascular smooth muscle cells (VSMCs), we used the technique of differential cDNA screening using RNA from cultured rat aortic VSMCs. The tissue specificity of expression of all of the cDNAs isolated was determined by Northern analysis. We isolated seven distinct cDNAs that were more strongly expressed in freshly dispersed, differentiated, aortic VSMCs compared with dedifferentiated late-passage cells. These were the cDNAs for tropoelastin, a matrix protein; alpha-smooth muscle (SM) actin, gamma-SM actin, calponin, and phospholamban, which are all proteins associated with the contractile function of differentiated VSMCs; SM22 alpha, a smooth muscle-specific protein of unknown function, and CHIP28, a putative membrane channel protein that is not highly expressed in other SM tissues and may therefore be a new VSMC marker. Two cDNAs that were expressed preferentially in late-passage dedifferentiated VSMCs were also isolated. These were the cDNAs for osteopontin and matrix Gla protein (MGP). Like CHIP28, MGP was strongly expressed in aortic VSMCs but not in other types of tissues containing SM cells, suggesting that both have specific functions in vascular tissue. Osteopontin and MGP have both previously been isolated from developing bone. Their expression in proliferating VSMCs suggests that they may be involved in regulating the calcification that commonly occurs in vascular lesions. The set of cDNAs obtained extends the range of DNA probes that are available for identifying VSMCs and characterizing their phenotype in vivo by in situ hybridization. Therefore, they should aid in the analysis of gene expression during the development of vessel lesions.
A (Mg2+ + Ca2+)ATPase (ATP phosphohydrolase, EC 3.6.1.3) has been purified from sarcoplasmic reticulum using a single step centrifugation procedure. Physical and biochemical studies of membrane structure are complicated by the multiplicity of components in native membranes. One solution is to reconstitute specific membrane functions using the minimum number of defined lipid and protein components. This would allow both the determination of the tolerated range of lipid composition and the insertion of specifically labeled components into the reconstituted structure to serve as physical probes. We selected the active Ca2+ transport system of sarcoplasmic reticulum (SR) for reconstitution because the major protein in the membrane is the (Mg2+ + Ca2+)ATPase (ATP phosphohydrolase, EC 3.6.
Pure complexes of dipalmitoyllecithin (DPL, 16:0) which Ca2+, Mg2+ dependent ATPase from sarcoplasmic reticulum are unusual in retaining significant ATPase activity down to about 30 degrees C, well below the transition temperature of the pure lipid at 41 degrees C. A minimum of about 35 lipid molecules per ATPase is required to maintain maximal ATPase activity, but the complexes are progressively and irreversibly inactivated at lower lipid to protein ratios. Complexes containing more than the minimum lipid requirement show very similar temperature profiles of activity about 30 degrees C over a wide range of lipid to protein ratios, up to 1500:1. Spin-label studies indicate that, at lipid to protein ratios of less than about 30 lipids per ATPase, no DPL phase transition can be detected, but at all higher ratios, a phase transition occurs at about 41 degrees C. In all of these complexes there are breaks in the Arrhenius plots of ATPase activity at 27--32 degrees C and at 37.5--38.5 degrees C. Experiments with perturbing agents, such as cholesterol and benzyl alcohol which have well-defined effects on the DPL phase transition, indicate that these breaks in the Arrhenius plots of ATPase activity cannot be attributed to a depressed and broadened phase transition in the lipids near the protein molecules. These results are interpreted as evidence for a phospholipid annulus of at least 30 lipid molecules with interact directly with the ATPase and cannot undergo a phase transition at 41 degrees C. This structural interaction of the ATPase with the annular DPL molecules has a predominant effect in determining the form of the temperature-activity profiles. However, the perturbation of the DPL phase transition does not extend significantly beyond the annulus since a phase transition which starts at 41 degrees C can be detected as soon as extraannular lipid is present in the complexes. We suggest that it may be a general feature of membrane structure that penetrant membrane proteins interact with their immediate lipid environment so as to cause only a minimal perturbation of the lipid bilayer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.